Package ‘miscTools’

February 20, 2015

Version 0.6-16
Date 2013/03/13
Title Miscellaneous Tools and Utilities
Author Arne Henningsen, Ott Toomet
Maintainer Arne Henningsen <arne.henningsen@gmail.com>
Depends R (>= 2.14.0)
Suggests Ecdat (>= 0.1-5)
Description Miscellaneous small tools and utilities
License GPL (>= 2)
URL http://www.micEcon.org
NeedsCompilation no
Repository CRAN
Date/Publication 2013-03-13 21:27:18

R topics documented:

 coefTable .. 2
colMedians .. 3
compPlot ... 4
ddnorm ... 4
insertCol .. 5
insertRow .. 6
margEff ... 7
nObs ... 7
nParam ... 8
quasiconcavity .. 9
rowMedians .. 10
rSquared .. 11
semidefiniteness ... 11
stdEr ... 12
sumKeepAttr ... 13
Description

Generate Table for Coefficients, Std. Errors, t-values and P-values.

Usage

```
coefTable( coef, stderr, df = NULL )
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>coef</td>
<td>vector that contains the coefficients.</td>
</tr>
<tr>
<td>stderr</td>
<td>vector that contains the standard errors of the coefficients.</td>
</tr>
<tr>
<td>df</td>
<td>degrees of freedom of the t-test used to calculate P-values.</td>
</tr>
</tbody>
</table>

Value

A matrix with 4 columns: coefficients, standard errors, t-values and P-values. If argument df is not provided, the last column (P-values) is filled with NAs.

Author(s)

Arne Henningsen

Examples

```
coefTable( rnorm( 10 ), 0.5 * abs( rnorm( 10 ) ), 20 )
```
colMedians

Medians of Columns

Description

Compute the sample medians of the columns (non-rows) of a data.frame or array.

Usage

colMedians(x, na.rm = FALSE)

Arguments

x
a data.frame or array.

na.rm
a logical value indicating whether NA values should be stripped before the computation proceeds.

Value

A vector or array of the medians of each column (non-row) of x with dimension dim(x)[-1].

Author(s)

Arne Henningsen

See Also

rowMedians, median, colMeans.

Examples

data("Electricity", package = "Ecdat")
colMedians(Electricity)

a4 <- array(1:120, dim = c(5,4,3,2),
 dimnames = list(c("A","B","C","D","E"), c("A","B","C","D"),
 c("x","y","z"), c("Y","Z")))
colMedians(a4)
median(a4[, "B", "x", "Z"]) # equal to
colMedians(a4)["B", "x", "Z"]
compPlot
Scatterplot to Compare two Variables

Description

Plot a scatterplot to compare two variables.

Usage

```r
compPlot( x, y, lim = NULL, ... )
```

Arguments

- `x`: values of the first variable (on the X axis).
- `y`: values of the second variable (on the Y axis).
- `lim`: optional vector of two elements specifying the limits of both axes).
- `...`: further arguments are passed to `plot`.

Author(s)

Arne Henningsen

Examples

```r
set.seed(123)
x <- runif(25)
y <- 2 + 3 * x + rnorm(25)
ols <- lm(y ~ x)
compPlot(y, fitted(ols))
compPlot(y, fitted(ols), lim = c(0, 10))
compPlot(y, fitted(ols), pch = 20)
compPlot(y, fitted(ols), xlab = "observed", ylab = "fitted")
compPlot(y, fitted(ols), log = "xy")
```

ddnorm
Derivative of the Normal Distribution’s Density Function

Description

This function returns the derivative(s) of the density function of the normal (Gaussian) distribution with respect to the quantile, evaluated at the quantile(s), mean(s), and standard deviation(s) specified by arguments `x`, `mean`, and `sd`, respectively.
Usage

ddnorm(x, mean = 0, sd = 1)

Arguments

x quantile or vector of quantiles.
mean mean or vector of means.
sd standard deviation or vector of standard deviations.

Value

numeric value(s): derivative(s) of the density function of the normal distribution with respect to the quantile

Author(s)

Arne Henningsen

See Also

dnorm

Examples

ddnorm(c(-1, 0, 1))

insertCol

Insert Column into a Matrix

Description

Insert a new column into a matrix.

Usage

insertCol(m, c, v = NA, cName = "")

Arguments

m matrix.
c column number where the new column should be inserted.
v optional values of the new column.
cName optional character string: the name of the new column.

Value

a matrix with one more column than the provided matrix m.

Author(s)
Arne Henningsen

See Also
insertRow.

Examples

```r
m <- matrix( 1:4, 2 )
insertCol( m, 2, 5:6 )
```

insertRow
Insert Row into a Matrix

Description
Insert a new row into a matrix.

Usage

```r
insertRow( m, r, v = NA, rName = "" )
```

Arguments

- `m` matrix.
- `r` row number where the new row should be inserted.
- `v` optional values for the new row.
- `rName` optional character string: the name of the new row.

Value

A matrix with one more row than the provided matrix `m`.

Author(s)
Arne Henningsen

See Also
insertCol.

Examples

```r
m <- matrix( 1:4, 2 )
insertRow( m, 2, 5:6 )
```
margEff

Method for Returning Marginal Effects

Description

Currently, this package just defines the generic function `margEff` so that it can be used to define `margEff` methods for objects of specific classes in other packages.

Usage

`margEff(object, ...)`

Arguments

- `object`: an object of which marginal effects should be calculated.
- `...`: further arguments for methods

nObs

Return number of observations for statistical models

Description

Returns number of observations for statistical models. The default method assumes presence of a component `param$nObs` in `x`.

Usage

`nObs(x, ...)`

```
## Default S3 method:
nObs(x, ...)
## S3 method for class 'lm'
nObs(x, ...)
```

Arguments

- `x`: a statistical model, such as created by `lm`
- `...`: further arguments for methods

Details

This is a generic function. The default method returns the component `x$param$nObs`. The `lm`-method is based on `qr`-decomposition, in the same way as the does `summary.lm`.
Value

numeric, number of observations

Author(s)

Ott Toomet, <otoomet@econ.au.dk>

See Also

nParam

Examples

```r
# Construct a simple OLS regression:
x1 <- runif(100)
x2 <- runif(100)
y <- 3 + 4*x1 + 5*x2 + rnorm(100)
m <- lm(y~x1+x2)  # estimate it
nObs(m)
```

nParam

Number of model parameters

Description

This function returns the number of model parameters. The default method returns the component x$param$nParam.

Usage

```r
nParam(x, free=FALSE, ...)
```

Default S3 method:

```r
nParam(x, ...)
```

S3 method for class 'lm'

```r
nParam(x, ...)
```

Arguments

- `x` a statistical model
- `free` logical, whether to report only the free parameters or the total number of parameters (default)
- `...` other arguments for methods

Details

Free parameters are the parameters with no equality restrictions. Some parameters may be restricted (e.g. sum of two probabilities may be restricted to equal unity). In this case the total number of parameters may depend on the normalisation.
quasiconcavity

Value
Number of parameters in the model

Author(s)
Ott Toomet, <otoomet@econ.au.dk>

See Also
nObs for number of observations

Examples

Construct a simple OLS regression:
x1 <- runif(100)
x2 <- runif(100)
y <- 3 + 4*x1 + 5*x2 + rnorm(100)
m <- lm(y~x1+x2) # estimate it
summary(m)
nParam(m) # you get 3

quasiconcavity

Test for quasiconcavity / quasiconvexity

Description
Test whether a function is quasiconcave or quasiconvex. The bordered Hessian of this function is checked by quasiconcavity() or quasiconvexity().

Usage

quasiconcavity(m, tol = .Machine$double eps)
quasiconvexity(m, tol = .Machine$double eps)

Arguments

m a bordered Hessian matrix or a list containing bordered Hessian matrices
tol tolerance level (values between -tol and tol are considered to be zero).

Value

linalg or a logical vector (if m is a list).

Author(s)
Arne Henningsen
rowMedians

References

Examples

```r
quasiconcavity( matrix( 0, 3, 3 ) )
quasiconvexity( matrix( 0, 3, 3 ) )

m <- list()
m[[1]] <- matrix( c( 0,-1,-1, -1,-2,3, -1,3,5 ), 3, 3 )
m[[2]] <- matrix( c( 0,1,-1, 1,-2,3, -1,3,5 ), 3, 3 )
quasiconcavity( m )
quasiconvexity( m )
```

rowMedians

Medians of Rows

Description

Compute the sample medians of the rows of a data.frame or matrix.

Usage

```r
rowMedians( x, na.rm = FALSE )
```

Arguments

- `x`: a data.frame or matrix.
- `na.rm`: a logical value indicating whether NA values should be stripped before the computation proceeds.

Value

A vector of the medians of each row of `x`.

Author(s)

Arne Henningsen

See Also

`colMedians`, `median`, `colMeans`.

Examples

```r
m <- matrix( 1:12, nrow = 4 )
rowMedians( m )
```
rSquared

rSquared

Calculate R squared value

Description

Calculate R squared value.

Usage

`rSquared(y, resid)`

Arguments

- `y` vector of endogenous variables
- `resid` vector of residuals

Author(s)

Arne Henningsen

Examples

```r
data( "Electricity", package = "Ecdat" )
reg <- lm( cost ~ q + pl + pk + pf, Electricity )
rSquared( Electricity$cost, reg$residuals )
summary( reg )$r.squared # returns the same value
```

semidefiniteness

Positive or Negative Semidefiniteness

Description

Check whether a symmetric matrix is positive or negative semidefinite.

Usage

```r
semidefiniteness( m, positive = TRUE, tol = .Machine$double.eps,
                  method = "det" )
```

Arguments

- `m` a quadratic matrix or a list containing quadratic matrices.
- `positive` logical. Check for positive (TRUE, default) or negative (FALSE) semidefiniteness.
- `tol` tolerance level (values between -tol and tol are considered to be zero).
- `method` method to test for semidefiniteness, either "det" (the textbook method: checking for the signs of the determinants of sub-matrices) or "eigen" (checking for the signs of the eigen values).
Details

Please note that a matrix can be neither positive nor negative semidefinite or positive and negative semidefinite at the same time.

Value

semidefiniteness returns a logical value or a logical vector (if argument m is a list) indicating whether the matrix (or each of the matrices) is positive/negative (depending on argument positive) semidefinite.

Author(s)

Arne Henningsen

References

Examples

```r
# a positive semidefinite matrix
semidefiniteness(m = matrix(1, 3, 3))

# a negative semidefinite matrix
semidefiniteness(m = matrix(-1, 3, 3), positive = FALSE)

# a matrix that is positive and negative semidefinite
semidefiniteness(m = matrix(0, 3, 3))
semidefiniteness(m = matrix(0, 3, 3), positive = FALSE)

# a matrix that is neither positive nor negative semidefinite
semidefiniteness(m = matrix(1:9, 3, 3))
semidefiniteness(m = matrix(1:9, 3, 3), positive = FALSE)
```

stdEr

Standard deviations

Description

Extract standard deviations from estimated models.

Usage

```r
stdEr(x, ...)
```

Default S3 method:

```r
stdEr(x, ...)
```

S3 method for class 'lm'

```r
stdEr(x, ...)
```
Arguments

- `x` a statistical model, such as created by `lm`
- `...` further arguments for methods

Details

`stdErr` is a generic function with methods for objects of "lm" class. The default method returns the square root of the diagonal of the variance-covariance matrix.

Value

numeric, the estimated standard errors of the coefficients.

Author(s)

Ott Toomet `<otoomet@ut.ee>`

See Also

`vcov`, `summary`.

Examples

```r
data(cars)
lmRes <- lm(dist ~ speed, data=cars)
stdErr( lmRes )
```

sumKeepAttr
Sum of an Array While Keeping its Attributes

Description

This function returns the sum of an numeric array (e.g. vector or matrix) while keeping its attributes.

Usage

```r
sumKeepAttr( x, keepNames = FALSE, na.rm = FALSE )
```

Arguments

- `x` an numeric array (e.g. vector or matrix).
- `keepNames` logical. Should the name(s) of the element(s) of x be assigned to the returned sum? (only relevant if x has only one element).
- `na.rm` logical. Passed to `sum`. Should missing values be removed?

Value

the sum (see `sum`).
Author(s)
Arne Henningsen

See Also
sum

Examples
a <- 1:10
attr(a, "min") <- 1
attr(a, "max") <- 10
sum(a)
sumKeepAttr(a)

symMatrix Symmetric Matrix

Description
Create a Symmetric Matrix.

Usage
symMatrix(data = NA, nrow = NULL, byrow = FALSE,
upper = FALSE)

Arguments
data an optional data vector.
nrow the desired number of rows and columns.
byrow logical. If 'FALSE' (the default) the matrix is filled by columns, otherwise the
matrix is filled by rows.
upper logical. If 'FALSE' (the default) the lower triangular part of the matrix (including
the diagonal) is filled, otherwise the upper triangular part of the matrix is
filled.

Value
a symmetric matrix.

Author(s)
Arne Henningsen

See Also
matrix, lower.tri.
Examples

```r
# fill the lower triangular part by columns
symMatrix( 1:10, 4 )
# fill the upper triangular part by columns
symMatrix( 1:10, 4, upper = TRUE )
# fill the lower triangular part by rows
symMatrix( 1:10, 4, byrow = FALSE )
```

Description

Creates an upper triangular square matrix from a vector.

Usage

```r
triang( v, n )
```

Arguments

- `v` vector
- `n` desired dimension of the returned square matrix

Note

If the vector has less elements than the upper triangular matrix, the last elements are set to zero.

Author(s)

Arne Henningsen

See Also

`veclipos`

Examples

```r
v <- c( 1:5 )
triang( v, 3 )
```
vecli

Vector of linear independent values

Description

Returns a vector containing the linear independent elements of a symmetric matrix (of full rank).

Usage

vecli(m)

Arguments

m symmetric matrix

Author(s)

Arne Henningsen

See Also

veclipos.

Examples

a symmetric n x n matrix
m <- cbind(c(11,12,13),c(12,22,23),c(13,23,33))
vecli(m) # returns: 11 12 13 22 23 33

vecli2m

Convert vector of linear independent values into a Matrix

Description

Converts a vector into a symmetric matrix that the original vector contains the linear independent values of the returned symmetric matrix.

Usage

vecli2m(v)

Arguments

v a vector.
\textbf{veclipos}

\textbf{Author(s)}
Arne Henningsen

\textbf{See Also}
\texttt{vecli}, \texttt{veclipos}.

\textbf{Examples}
\begin{verbatim}
 v <- c(11, 12, 13, 22, 23, 33)
 vecli2m(v)

df <- data.frame(row = 1:6, col = 1:6, value = (1:36))
 i <- df$col[3]
 j <- df$row[3]
 veclipos(i, j, 6)

df$veclipos <- apply(df, c(1, 2), veclipos)

 veclipos(1, 2, 3) # returns: 2
\end{verbatim}

\textbf{Description}
Returns the position of the \([i,j]\)th element of a symmetric \(n \times n\) matrix that this element has in a vector of the linear independent values of the matrix.

\textbf{Usage}
\begin{verbatim}
 veclipos(i, j, n)
\end{verbatim}

\textbf{Arguments}
- \texttt{i} row of the element in the matrix.
- \texttt{j} column of the element in the matrix.
- \texttt{n} dimension of the matrix.

\textbf{Note}
A symmetric \(n \times n\) matrix has \(n^*(n+1)/2\) independent values.
The function is: \(n^*(n-1)/2-((n-min(i,j))*(n-min(i,j)+1)/2)+max(i,j)\)

\textbf{Author(s)}
Arne Henningsen

\textbf{See Also}
\texttt{vecli}, \texttt{vecli2m}.

\textbf{Examples}
\begin{verbatim}
 veclipos(1, 2, 3) # returns: 2
\end{verbatim}
Index

*Topic array
- colMedians, 3
- insertCol, 5
- insertRow, 6
- quasiconcavity, 9
- rowMedians, 10
- rSquared, 11
- semidefiniteness, 11
- symMatrix, 14
- triang, 15
- vecli, 16
- vecli2m, 16
- veclipos, 17

*Topic methods
- ddnorm, 4
- margEff, 7
- nObs, 7
- nParam, 8
- stdEr, 12
- sumKeepAttr, 13

*Topic models
- coefTable, 2
- compPlot, 4

*Topic multivariate
- rSquared, 11

*Topic univar
- rSquared, 11

- coefTable, 2
- colMeans, 3, 10
- colMedians, 3, 10
- compPlot, 4

- ddnorm, 4
- dnorm, 5

- insertCol, 5, 6
- insertRow, 6, 6

- lm, 7, 13

- lower.tri, 14
 - margEff, 7
 - matrix, 14
 - median, 3, 10
 - nObs, 7, 9
 - nParam, 8, 8
 - plot, 4
 - quasiconcavity, 9
 - quasiconvexity (quasiconcavity), 9
 - rowMedians, 3, 10
 - rSquared, 11
 - semidefiniteness, 11
 - stdEr, 12
 - sum, 13, 14
 - sumKeepAttr, 13
 - summary, 13
 - summary.lm, 7
 - symMatrix, 14
 - triang, 15

- vcov, 13
- vecli, 16, 17
- vecli2m, 16, 17
- veclipos, 15–17, 17