Package ‘smoothtail’
April 4, 2015

Type Package
Title Smooth Estimation of GPD Shape Parameter
Version 2.0.4
Date 2015-07-03
Author
Kaspar Rufibach <kaspar.rufibach@gmail.com> and Samuel Mueller <samuel.mueller@sydney.edu.au>
Maintainer Kaspar Rufibach <kaspar.rufibach@gmail.com>
Depends logcondens (>= 2.0.0)
Imports stats
Description Given independent and identically distributed observations \(X(1), ..., X(n) \) from a Generalized Pareto distribution with shape parameter \(\gamma \) in \([-1,0]\), offers several estimates to compute estimates of \(\gamma \). The estimates are based on the principle of replacing the order statistics by quantiles of a distribution function based on a log--concave density function. This procedure is justified by the fact that the GPD density is log--concave for \(\gamma \) in \([-1,0]\).
License GPL (>= 2)
URL http://www.kasparrufibach.ch,
NeedsCompilation no
Repository CRAN
Date/Publication 2015-07-04 15:16:29

R topics documented:

smoothtail-package .. 2
falk ... 4
falkMVUE ... 6
generalizedPick .. 7
gpd ... 9
lambdaGenPick ... 10
pickands .. 11
Index .. 13
Description

Given independent and identically distributed observations \(X_1 < \ldots < X_n\) from a Generalized Pareto distribution with shape parameter \(\gamma \in [-1, 0]\), offers three methods to compute estimates of \(\gamma\). The estimates are based on the principle of replacing the order statistics \(X_{(1)}, \ldots, X_{(n)}\) of the sample by quantiles \(\hat{X}_{(1)}, \ldots, \hat{X}_{(n)}\) of the distribution function \(\hat{F}_n\) based on the log–concave density estimator \(\hat{f}_n\). This procedure is justified by the fact that the GPD density is log–concave for \(\gamma \in [-1, 0]\).

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>smoothtail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>2.0.4</td>
</tr>
<tr>
<td>Date:</td>
<td>2015-07-03</td>
</tr>
<tr>
<td>License:</td>
<td>GPL (>=2)</td>
</tr>
</tbody>
</table>

Use this package to estimate the shape parameter \(\gamma\) of a Generalized Pareto Distribution (GPD). In extreme value theory, \(\gamma\) is denoted tail index. We offer three new estimators, all based on the fact that the density function of the GPD is log–concave if \(\gamma \in [-1, 0]\), see Mueller and Rufibach (2009). The functions for estimation of the tail index are:

- `pickands`
- `falk`
- `falkMVUE`
- `generalizedPick`

This package depends on the package `logcondens` for estimation of a log–concave density: all the above functions take as first argument a `d1c` object as generated by `logConDens` in `logcondens`.

Additionally, functions for density, distribution function, quantile function and random number generation for a GPD with location parameter 0, shape parameter \(\gamma\) and scale parameter \(\sigma\) are provided:

- `dgpd`
- `pgpd`
- `qgpd`
- `rgpd`

Let us shortly clarify what we mean with log–concave density estimation. Suppose we are given an ordered sample \(Y_1 < \ldots < Y_n\) of i.i.d. random variables having density function \(f\), where \(f = \exp \varphi\) for a concave function \(\varphi : (-\infty, \infty) \rightarrow \mathbb{R}\). Following the development in Duembgen and Rufibach (2009), it is then possible to get an estimator \(\hat{f}_n = \exp \hat{\varphi}_n\) of \(f\) via the maximizer \(\hat{\varphi}_n\) of
\[L(\varphi) = \sum_{i=1}^{n} \varphi(Y_i) - \int \exp \varphi(t) dt \]

over all concave functions \(\varphi \). It turns out that \(\hat{\varphi}_n \) is piecewise linear, with knots only at (some of the) observation points. Therefore, the infinite-dimensional optimization problem of finding the function \(\hat{\varphi}_n \) boils down to a finite dimensional problem of finding the vector \((\hat{\varphi}_n(Y_1), \ldots, \hat{\varphi}_n(Y_n)) \).

How to solve this problem is described in Rufibach (2006, 2007) and in a more general setting in Duembgen, Huesler, and Rufibach (2010). The distribution function based on \(\hat{f}_n \) is defined as

\[\hat{F}_n(x) = \int_{Y_1}^{x} \hat{f}_n(t) dt \]

for \(x \) a real number. The definition of \(\hat{F}_n \) is justified by the fact that \(\hat{F}_n(Y_1) = 0 \).

Author(s)

Kaspar Rufibach (maintainer), <kaspar.rufibach@gmail.com>,
http://www.kasparrufibach.ch

Samuel Mueller, <samuel.mueller@sydney.edu.au>,

Kaspar Rufibach acknowledges support by the Swiss National Science Foundation SNF, http://www.snf.ch

References

See Also

Package logcondens.
Examples

generate ordered random sample from GPD
set.seed(1977)
n <- 20
gam <- -0.75
x <- rgpd(n, gam)

compute known endpoint
omega <- -1 / gam

estimate log-concave density, i.e. generate dlc object
est <- logConDens(x, smoothed = FALSE, print = FALSE, gam = NULL, xs = NULL)

plot distribution functions
s <- seq(0.01, max(x), by = 0.01)
plot(0, 0, type = 'n', ylim = c(0, 1), xlim = range(c(x, s))); rug(x)
lines(s, pgpd(s, gam), type = 'l', col = 2)
lines(x, 1:n / n, type = 's', col = 3)
lines(x, est$hat, type = 'l', col = 4)
legend(1, 0.4, c('true', 'empirical', 'estimated'), col = c(2 : 4), lty = 1)

compute tail index estimators for all sensible indices k
falk.logcon <- falk(est)
falkMVUE.logcon <- falkMVUE(est, omega)
pick.logcon <- pickands(est)
genpick.logcon <- generalizedPick(est, c = 0.75, gam0 = -1/3)

plot smoothed and unsmoothed estimators versus number of order statistics
plot(0, 0, type = 'n', xlim = c(0, n), ylim = c(-1, 0.2))
lines(1:n, pick.logcon[, 2], col = 1); lines(1:n, pick.logcon[, 3], col = 1, lty = 2)
lines(1:n, falk.logcon[, 2], col = 2); lines(1:n, falk.logcon[, 3], col = 2, lty = 2)
lines(1:n, falkMVUE.logcon[,2], col = 3); lines(1:n, falkMVUE.logcon[,3], col = 3, lty = 2)
lines(1:n, genPick.logcon[, 2], col = 4); lines(1:n, genPick.logcon[, 3], col = 4, lty = 2)
abline(h = gam, lty = 3)
legend(11, 0.2, c("Pickands", "Falk", "Falk MVUE", "Generalized Pickands"), lty = 1, col = 1:8)

\textbf{falk}

Compute original and smoothed version of Falk's estimator

\textbf{Description}

Given an ordered sample of either exceedances or upper order statistics which is to be modeled using a GPD, this function provides Falk's estimator of the shape parameter \(\gamma \in [-1, 0] \). Precisely,

\[
\hat{\gamma}_{\text{Falk}} = \hat{\gamma}_{\text{Falk}}(k, n) = \frac{1}{k - 1} \sum_{j=2}^{k} \log \left(\frac{X_{(n)} - H^{-1}(n - j + 1)/n)}{X_{(n)} - H^{-1}(n - k)/n) \right), \quad k = 3, \ldots, n - 1
\]
for SHS either the empirical or the distribution function based on the log–concave density estimator.
Note that for any \(k, \hat{\gamma}_{\text{Falk}} : R^n \rightarrow (-\infty, 0) \). If \(\hat{\gamma}_{\text{Falk}} \notin [-1,0) \), then it is likely that the log-concavity assumption is violated.

Usage

```r
falk(est, ks = NA)
```

Arguments

- `est` Log-concave density estimate based on the sample as output by `logConDens` (a `dlc` object).
- `ks` Indices \(k \) at which Falk’s estimate should be computed. If set to `NA` defaults to \(3, \ldots, n-1 \).

Value

A \(n \times 3 \) matrix with columns: indices \(k \), Falk’s estimator based on the log-concave density estimate, and the ordinary Falk’s estimator based on the order statistics.

Author(s)

Kaspar Rufibach (maintainer), <kaspar.rufibach@gmail.com>, http://www.kasparrufibach.ch

Kaspar Rufibach acknowledges support by the Swiss National Science Foundation SNF, http://www.snf.ch

References

See Also

Other approaches to estimate \(\gamma \) based on the fact that the density is log–concave, thus \(\gamma \in [-1,0] \), are available as the functions `pickands`, `falkMVUE`, `generalizedPick`.

Examples

```r
# generate ordered random sample from GPD
set.seed(1977)
n <- 20
gam <- -0.75
x <- rgpd(n, gam)
```
Description

Given an ordered sample of either exceedances or upper order statistics which is to be modeled using a GPD with distribution function F, this function provides Falk’s estimator of the shape parameter $\gamma \in [-1, 0]$ if the endpoint

$$\omega(F) = \sup\{x : F(x) < 1\}$$

of F is known. Precisely,

$$\hat{\gamma}_{MVUE} = \hat{\gamma}_{MVUE}(k, n) = \frac{1}{k} \sum_{j=1}^{k} \log \left(\frac{\omega(F) - H^{-1}(n - j + 1)/n}{\omega(F) - H^{-1}(n - k)/n} \right), \quad k = 2, \ldots, n - 1$$

for H either the empirical or the distribution function based on the log–concave density estimator. Note that for any k, $\hat{\gamma}_{MVUE} : \mathbb{R}^n \to (-\infty, 0)$. If $\hat{\gamma}_{MVUE} \notin [-1, 0)$, then it is likely that the log-concavity assumption is violated.

Usage

```r
falkMVUE(est, omega, ks = NA)
```

Arguments

- **est**: Log-concave density estimate based on the sample as output by `logConDens` (a dlc object).
- **omega**: Known endpoint. Make sure that $\omega \geq X(n)$.
- **ks**: Indices k at which Falk’s estimate should be computed. If set to NA defaults to $2, \ldots, n - 1$.

Value

A $n \times 3$ matrix with columns: indices k, Falk’s MVUE estimator using the log-concave density estimate, and the ordinary Falk MVUE estimator based on the order statistics.
generalizedPick

Author(s)

Kaspar Rufibach (maintainer), <kaspar.rufibach@gmail.com>, http://www.kasparrufibach.ch

Kaspar Rufibach acknowledges support by the Swiss National Science Foundation SNF, http://www.snf.ch

References

See Also

Other approaches to estimate \(\gamma \) based on the fact that the density is log-concave, thus \(\gamma \in [-1, 0] \), are available as the functions *pickands, falk, generalizedPick*.

Examples

```r
# generate ordered random sample from GPD
set.seed(1977)
n <- 20
gam <- -0.75
x <- rgpd(n, gam)

## generate dlc object
est <- logConDens(x, smoothed = FALSE, print = FALSE, gam = NULL, xs = NULL)

# compute tail index estimators
omega <- -1 / gam
falkMVUE(est, omega)
```

generalizedPick

Compute generalized Pickand’s estimator

Description

Given an ordered sample of either exceedances or upper order statistics which is to be modeled using a GPD with distribution function \(F \), this function provides Segers’ estimator of the shape parameter \(\gamma \), see Segers (2005). Precisely, for \(k = \{1, \ldots, n - 1\} \), the estimator can be written as
$\hat{\gamma}^k_{\text{Segers}}(H) = \sum_{j=1}^{k} \left(\lambda(j/k) - \lambda((j-1)/k) \right) \log \left(H^{-1}((n-\lfloor cj \rfloor)/n) - H^{-1}((n-j)/n) \right)$

for H either the empirical or the distribution function based on the log–concave density estimator and λ the mixing measure given in Segers (2005), Theorem 4.1, (i). Note that for any k, $\hat{\gamma}^k_{\text{Segers}} : R^n \to (-\infty, \infty)$. If $\hat{\gamma}_{\text{Segers}} \notin [-1, 0)$, then it is likely that the log-concavity assumption is violated.

Usage

generalizedPick(est, c, gam0, ks = NA)

Arguments

- `est` Log-concave density estimate based on the sample as output by logConDen (a dlc object).
- `c` Number in $(0, 1)$, determining the spacings that are used.
- `gam0` Number in $R \setminus 0.5$, specifying the mixing measure.
- `ks` Indices k at which Falk’s estimate should be computed. If set to NA defaults to $4, \ldots, n$.

Value

$n \times 3$ matrix with columns: indices k, Segers’ estimator using the smoothing method, and the ordinary Segers’ estimator based on the order statistics.

Author(s)

Kaspar Rufibach (maintainer), <kaspar.rufibach@gmail.com>, http://www.kasparrufibach.ch

Kaspar Rufibach acknowledges support by the Swiss National Science Foundation SNF, http://www.snf.ch

References

See Also

Other approaches to estimate γ based on the fact that the density is log–concave, thus $\gamma \in [-1, 0]$, are available as the functions *pickands*, *falk*, *falkMVUE*.
Examples

```r
# generate ordered random sample from GPD
set.seed(1977)
n <- 20
gam <- -0.75
x <- rgpd(n, gam)

## generate dlc object
est <- logConDens(x, smoothed = FALSE, print = FALSE, gam = NULL, xs = NULL)

# compute tail index estimators
generalizedPick(est, c = 0.75, gam0 = -1/3)
```

gpd

The Generalized Pareto Distribution

Description

Density function, distribution function, quantile function and random generation for the generalized Pareto distribution (GPD) with shape parameter \(\gamma \) and scale parameter \(\sigma \).

Usage

```r
dgpd(x, gam, sigma = 1)
pgpd(q, gam, sigma = 1)
qgpd(p, gam, sigma = 1)
rgpd(n, gam, sigma = 1)
```

Arguments

- `x`, `q` Vector of quantiles.
- `p` Vector of probabilities.
- `n` Number of observations.
- `gam` Shape parameter, real number.
- `sigma` Scale parameter, positive real number.

Details

The generalized Pareto distribution function (Pickands, 1975) with shape parameter \(\gamma \) and scale parameter \(\sigma \) is

\[
W_{\gamma,\sigma}(x) = 1 - (1 + \gamma x/\sigma)^{-1/\gamma}.
\]

If \(\gamma = 0 \), the distribution function is defined by continuity. The density is denoted by \(w_{\gamma,\sigma} \).
Value

dgpd gives the values of the density function, pgpd those of the distribution function, and qgpd those of the quantile function of the GPD at x, q, and p, respectively. rgpd generates n random numbers, returned as an ordered vector.

Author(s)

Kaspar Rufibach, <kaspar.rufibach@gmail.com>,
http://www.kasparrufibach.ch

Samuel Mueller, <samuel.mueller@sydney.edu.au>,

References

See Also

Similar functions are provided in the R-packages evir and evd.

lambdaGenPick
Auxiliary function to compute Segers’ estimator

Description

This function computes

\[\lambda_{\delta,\rho} \]

given in Theorem 4.1 of Segers (2005) and is called by generalizedPick. It is not intended to be called by the user.

Author(s)

Kaspar Rufibach (maintainer), <kaspar.rufibach@gmail.com>,
http://www.kasparrufibach.ch

Samuel Mueller, <samuel.mueller@sydney.edu.au>,

Kaspar Rufibach acknowledges support by the Swiss National Science Foundation SNF, http://www.snf.ch
References

See Also

Called by `generalizedPick`.

pickands

Compute original and smoothed version of Pickands’ estimator

Description

Given an ordered sample of either exceedances or upper order statistics which is to be modeled using a GPD, this function provides Pickands’ estimator of the shape parameter $\gamma \in [-1, 0]$. Precisely, for $k = 4, \ldots, n$

$$\hat{\gamma}^k_{\text{Pick}} = \frac{1}{\log 2} \log \left(\frac{H^{-1}(n - r_k(H) + 1)/n) - H^{-1}(n - 2r_k(H) + 1)/n) - H^{-1}(n - 4r_k(H) + 1)/n) - H^{-1}(n - 2r_k(H) + 1)/n) - H^{-1}(n - 4r_k(H) + 1)/n)}{H^{-1}(n - 2r_k(H) + 1)/n) - H^{-1}(n - 4r_k(H) + 1)/n) - H^{-1}(n - 2r_k(H) + 1)/n) - H^{-1}(n - 4r_k(H) + 1)/n)} \right)$$

for H either the empirical or the distribution function \hat{F}_n based on the log-concave density estimator and

$$r_k(H) = \lfloor k/4 \rfloor$$

if H is the empirical distribution function and

$$r_k(H) = k/4$$

if $H = \hat{F}_n$.

Usage

`pickands(est, ks = NA)`

Arguments

- **est**: Log-concave density estimate based on the sample as output by `logCondens` (a dlc object).
- **ks**: Indices k at which Falk’s estimate should be computed. If set to `NA` defaults to $4, \ldots, n$.
Value

A $n \times 3$ matrix with columns: indices k, Pickands’ estimator using the log-concave density estimate, and the ordinary Pickands’ estimator based on the order statistics.

Author(s)

Kaspar Rufibach (maintainer), <kaspar.rufibach@gmail.com>, http://www.kasparrufibach.ch
Kaspar Rufibach acknowledges support by the Swiss National Science Foundation SNF, http://www.snf.ch

References

See Also

Other approaches to estimate γ based on the fact that the density is log-concave, thus $\gamma \in [-1, 0]$, are available as the functions falk, falkMVUE, generalizedPick.

Examples

```r
# generate ordered random sample from GPD
set.seed(1977)
n <- 20
gam <- -0.75
x <- rgpd(n, gam)

## generate dlc object
est <- logCondens(x, smoothed = FALSE, print = FALSE, gam = NULL, xs = NULL)

# compute tail index estimators
pickands(est)
```
Index

*Topic **distribution**
 falk, 4
 falkMVUE, 6
 generalizedPick, 7
 gpd, 9
 lambdaGenPick, 10
 pickands, 11
 smoothtail-package, 2

*Topic **htest**
 falk, 4
 falkMVUE, 6
 generalizedPick, 7
 gpd, 9
 lambdaGenPick, 10
 pickands, 11
 smoothtail-package, 2

*Topic **nonparametric**
 falk, 4
 falkMVUE, 6
 generalizedPick, 7
 gpd, 9
 lambdaGenPick, 10
 pickands, 11
 smoothtail-package, 2

dgpd, 2, 10
dgpd (gpd), 9

falk, 2, 4, 7, 8, 12
falkMVUE, 2, 5, 6, 8, 12

generalizedPick, 2, 5, 7, 7, 10–12
 gpd, 9

lambdaGenPick, 10
logcon (smoothtail-package), 2
logConDens, 2
logcondens (smoothtail-package), 2

pgpd, 2, 10
pgpd (gpd), 9