Package ‘solarius’

August 29, 2016

Type Package
Title An R Interface to SOLAR
Version 0.3.0.2
Date 2015-12-12
Maintainer Andrey Ziyatdinov <andrey.ziyatdinov@upc.edu>
Description SOLAR is the standard software program to perform linkage and association mappings of the quantitative trait loci (QTLs) in pedigrees of arbitrary size and complexity. This package allows the user to exploit the variance component methods implemented in SOLAR. It automates such routine operations as formatting pedigree and phenotype data. It also parses the model output and contains summary and plotting functions for exploration of the results. In addition, solarius enables parallel computing of the linkage and association analyses, that makes the calculation of genome-wide scans more efficient. See <http://solar.txbiomedgenetics.org/> for more information about SOLAR.
License GPL (>= 3)
URL https://github.com/ugcd/solarius
LazyData false
OS_type unix
Imports methods, plyr (>= 1.8.1), ggplot2, data.table
Suggests tools, kinship2, scales, Matrix, gdata, doParallel, iterators, parallel, qman, rsnps, grid, gridExtra
Collate 'package.R' 'datasets.R' 'data.lib.R' 'support.lib.R'
 'solar.lib.R' 'assoc.lib.R' 'classSolarAssoc.R'
 'classSolarPolygenic.R' 'plot.lib.R' 'polygenic.lib.R'
 'solarAssoc.R' 'solarPolyAssoc.R' 'solarPolygenic.R'
 'files.lib.R' 'classSolarMultipoint.R' 'solarMultipoint.R'
 'multipoint.lib.R' 'transforms.lib.R' 'solarMultivar.R'
 'solarBayesAvg.R' 'solarPar.R' 'modelPar.R'
RoxygenNote 5.0.1
NeedsCompilation no
Author Andrey Ziyatdinov [cre, aut],
 Helena Brunel [aut],
 Angel Martinez-Perez [aut],
 Alfonso Buil [aut],
 Alexandre Perera [cph],
 Jose Manuel Soria [cph]

Repository CRAN

Date/Publication 2015-12-13 16:51:09

R topics documented:

annotate .. 3
annotateSNPs .. 3
availableTransforms .. 4
dat30 ... 5
df2solar .. 6
explainedVarProp .. 7
getFormulaStr .. 7
loadExamplesPhen .. 8
loadMulticPhen .. 8
matchIdNames .. 9
matchMapNames ... 10
modelPar ... 11
package.file ... 11
phenodata .. 12
plotKinship2 ... 13
plotManh .. 14
plotPed .. 15
plotRes ... 16
readPhen .. 17
snpdata2solar ... 18
solar ... 19
solarAssoc .. 20
solarAssocClass .. 22
solarBaesysAvgPolygenicClass 23
solarKinship2 .. 23
solarMultipoint .. 24
solarMultipointClass .. 26
solarMultivarClass ... 27
solarPar .. 27
solarPolyAssoc ... 28
solarPolygenic .. 29
solarPolygenicClass ... 31
solarReadFiles ... 32
tabplot ... 32
transformData ... 33
transformTrait .. 34
annotate

Index

annotate Annotate SNPs in association study

Description

The function calls `annotateSNPs` function, which does the job.

Usage

```r
annotate(x, mode = c("significant", "top", "all"), alpha = 0.05,
         num.top = 10, ...)
```

Arguments

- **x**: An object of class `solarAssoc` or a character vector of SNPs.
- **mode**: A character with the mode of SNPs selection. Possible values are "significant", "top" and "all". The default value is "significant".
- **alpha**: A numeric value from 0 to 1, the significance level after Bonferroni multiple-test correction. Corresponds to `mode` equal to "significant".
- **num.top**: An integer value, the number of top SNPs to be annotated. Corresponds to `mode` equal to "top". The default value is 10.
- **...**: Additional arguments passed to `annotateSNPs`.

Value

A data table with annotation results.

See Also

`annotateSNPs`

annotateSNPs Annotate SNPs

Description

The function annotates SNPs based on NCBI2R R package, in particular `AnnotateSNPList` function.

Usage

```r
annotateSNPs(x, mode = c("significant", "top", "all"), alpha = 0.05,
              num.top = 10, query.size = 500, verbose = 0)
```
Arguments

- **x**: An object of class `solarAssoc` or a character vector of SNPs.
- **mode**: A character with the mode of SNPs selection. Possible values are "significant", "top" and "all". The default value is "significant".
- **alpha**: A numeric value from 0 to 1, the significance level after Bonferroni multiple-test correction. Corresponds to mode equal to "significant".
- **num.top**: An integer value, the number of top SNPs to be annotated. Corresponds to mode equal to "top". The default value is 10.
- **query.size**: An integer, the maximum number of SNPs allowed for a single query to the NCBI database. The default value is 500. See also the help page for `NCBI_snp_query` function in `rSNPs` package. If the number of SNPs is greater than query.size, then the query is split into batches automatically.
- **verbose**: An integer, the verbose level. The default value is 0.
- **...**: Additional arguments.

Details

See https://ncbi2r.wordpress.com/ for more details.

Value

A data table with annotation results.

`availableTransforms`
Get a list of available transforms.

Description

Get a list of available transforms.

Usage

`availableTransforms()`

Value

A character vector of transform names.

Examples

`availableTransforms()`
Description

29 first families were selected from the complete data set of 12000 individuals. For a resulted subset of 174 individuals, a hundred of synthetic SNPs were randomly generated. Annotation information also was generated, mainly in order to plot the association results with Manhattan plot.

Format

(Phenotypes) A data frame dat30 with 174 rows and 10 variables:

- **famid** Family ID (29 unique ids).
- **id** Individual ID.
- **fa** Father ID.
- **mo** Mother ID.
- **sex** Individual gender (1 - male, 2 - female).
- **affect** Affected status (1 - unaffected, 2 - affected).
- **class** Class label.
- **trait1** Simulated phenotype 1.
- **trait2** Simulated phenotype 2.
- **age** Age.

(Genotypes as covariates) A matrix genocovdat30 with 174 rows and 100 columns. Row names are IDs of individuals, column names are names of SNPs.

(Annotation) A data frame mapdat30 with 100 rows and 4 variables:

- **SNP** SNP name.
- **chr** Chromosome.
- **pos** Position in bp.
- **gene** Gene.

Details

Two simulated phenotypes possess a high genetic correlation.

Source

https://cran.r-project.org/package=multic
Examples

data(dat30)
str(dat30)

plotPed(dat30, 2) # plot the pedigree tree for family #2

Not run:
kin2 <- solarKinship2(dat30)
plotKinship2(kin2)
plotKinship2(kin2[1:30, 1:30])

End(Not run)
str(genocovdat30)

genocovdat30[1:5, 1:5]
str(mapdat30)

head(mapdat30)

df2solar

export phenotype and pedigree data into SOLAR files

Description

The function exports phenotype and pedigree data from R to SOLAR.

Usage

df2solar(df, dir, kinship, kin2.gz = "kin2.gz", sort.ped = TRUE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>A data frame that contains both phenotype and pedigree data.</td>
</tr>
<tr>
<td>dir</td>
<td>A character with path to a directory, where SOLAR files to be created.</td>
</tr>
<tr>
<td>kinship</td>
<td>(optional) A kinship matrix to be exported.</td>
</tr>
<tr>
<td>kin2.gz</td>
<td>A character with file name of SOLAR file to store the kinship matrix.</td>
</tr>
<tr>
<td>sort.ped</td>
<td>Logical, indicating where pedigree IDs (FAM or FAMID) to be sorted. The</td>
</tr>
<tr>
<td></td>
<td>default value is TRUE.</td>
</tr>
</tbody>
</table>

Details

The function (1) puts the data df in SOLAR format, (2) separates it into two parts, pedigree and phenotypes, and then (3) exports both data sets in the directory dir.

Pedigree or ID variables are detected by matchIdNames function.
explainedVarProp

Get explained variances for a group of SOLAR models.

Description
Get explained variances for a group of SOLAR models.

Usage
explainedVarProp(mod)

Arguments
mod An object of solarPolygenic class. See solarPolygenicClass.

Value
A data frame with two columns covariate and explainedVarProp.

getFormulaStr
Get formula string from a solarPolygenic object

Description
The function returns a character string with formula. The formula is derived based on traits and covlist slots of input object.

Usage
getFormulaStr(x)

Arguments
x An object of solarPolygenic object.

Value
A character string with formula.
loadExamplesPhen

Load the example data (GAW10) from SOLAR.

Description

Function loads the example data distributed with SOLAR. See the SOLAR tutorial for description of the data set.

Usage

loadExamplesPhen(dat.dir)

Arguments

dat.dir (optional) A character with path to a directory, where SOLAR files to be exported. If this argument is missing, a temporary directory is used.

Value

A data frame returned by readPhen function called with phen and ped files of the data set.

loadMulticPhen

Load the complete data set from R package multic

Description

The function loads the complete data of 12,000 individuals, which is stored in .phen and .ped files. These two files were generated within R package multic and re-distributed in R package solarius (extdata/solarOutput directory).

Usage

loadMulticPhen()

Details

Function readPhen is used to read .phen and .ped files.

Examples

dat <- loadMulticPhen()
dim(dat)

data(dat30)
dim(dat30)
Description

The function automates the process of renaming ID fields in data frame of phenotypes into a SOLAR format.

Usage

```r
matchIdNames(fields, sex.optional = FALSE, skip.sex = FALSE)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fields</td>
<td>The name of fields or column names in data frame, which are candidates to be ID fields.</td>
</tr>
<tr>
<td>sex.optional</td>
<td>Logical, indicating if through an error in the case SEX field is not found in input fields.</td>
</tr>
<tr>
<td>skip.sex</td>
<td>Logical, indicating if the search for SEX fields is completely skipped.</td>
</tr>
</tbody>
</table>

Value

A named character vector, that can be directly passed to `rename` function of `plyr` package.

Examples

```r
# @ http://helix.nih.gov/Documentation/solar-6.6.2-doc/91.appendix_1_text.html#load
solar> help file-pedigree
#
# The pedigree file consists of one record for each individual in the data
# set. Each record must include the following fields:
#
#   ego ID, father ID, mother ID, sex
#
# In addition, a family ID is required when ego IDs are not unique across
# the entire data set. If the data set contains genetically identical
# individuals, an MZ-twin ID must be present (as described below). If an
# analysis of household effects is planned, a household ID can be included
# (also described below).
#
# The default field names are ID, FA, MO, SEX, FAMID, MZTWIN, and HHID.
#
fields <- c("id", "ID", "ids",
            "famid", "FAMID", "famidity",
            "mo", "M0", "mother", "MOTHER", "M0trait", "motherland",
            "fa", "FA", "father", "FATHER", "fatherland",
            "sex", "SEX", "sexo")
```
ID
pass: id, ID
filter: ids
grep("^id$|^ID$", fields, value = TRUE)

FAMID
grep("^famid$|^FAMID$", fields, value = TRUE)

MO
grep("^mo$|^MO$|^mother$|^MOTHER$", fields, value = TRUE)

FA
grep("^fa$|^FA$|^father$|^FATHER$", fields, value = TRUE)

SEX
grep("^sex$|^SEX$", fields, value = TRUE)

matchMapNames

Match map column names

Description

The function searches for fields that correspond to those in SOLAR format of marker map file.

Usage

matchMapNames(fields)

Arguments

- **fields**: The name of fields or column names in data frame, which are candidates to be map fields.

Value

A named character vector, that can be directly passed to `rename` function of `plyr` package.

Examples

```r
data(dat50)
matchMapNames(names(snpdata))
```
modelPar

Get a parameter value from solarius models.

Description
Get a parameter value from solarius models.

Usage
modelPar(mod, par, ...)
modelParCPUtime(mod, format = "sec", ...)
modelParCores(mod)
modelParNumBatches(mod)

Arguments
mod An object of solarPolygenic, solarMultipoint or solarAssoc classes. See solarPolygenicClass, solarMultipointClass and solarAssocClass.
par A character, the parameter name.
... Additional arguments.
format A character, the format of the time value. The default value is "sec". The second possible value is "POSIX". This argument is only for modelParCPUtime function.

Value
A value of the given parameter.

package.file

Alternative to system.file

Description
The function works as system.file, but takes care when the package is a local folder.

Usage
package.file(...)

Arguments
... arguments to be passed to system.file
Details
The use case is when some data file or directory is needed to be loaded, and it is placed in `inst/` directory of the package.

Value
Path returned by `system.file`.

Examples
```
mibddir <- package.file("extdata", "solarOutput", "solarMibds", package = "solarius")
mibddir
list.files(mibddir)
```

phenodata

dat50 data set adapted from FFBSKAT R package

Description
A mixture of unrelated and related individuals was originally simulated in FFBSKAT R package to test methods of the variant-collapsing approach. 50 synthetic SNPs were generated for the association study. A custom kinship matrix is used to express the relationships among individuals. This data set is used here to test the ability of SOLAR to work with a custom kinship matrix in both polygenic and association analyses.

Format
(Phenotypes) A data frame `phenodata` with 66 rows and 4 variables:

- **id** Individual ID.
- **sex** Individual gender (0 - male, 1 - female).
- **age** Age.
- **trait** Simulated phenotype.

(Kinship) A square matrix `kin` with 66 rows and 66 columns.

(Genotypes) A matrix `genodata` with 66 rows and 50 columns.

(Genotypes as covariates) A matrix `genocovdata` with 66 rows and 50 columns.

(Annotation) A data frame `snpdata` with 100 rows and 4 variables:

- **name** SNP name.
- **chrom** Chromosome.
- **position** Position in bp.
- **gene** Gene.
Details

The genotypes are coded in the format such as 1/1, 1/2 and 2/2.
In addition to the original data set from FFBSKAT R package, a matrix of covariates was derived from the genotype data according to the additive model.

Source

http://mga.bionet.nsc.ru/soft/FFBSKAT/

Examples

data(dat50)

str(phenodata)
plotKinship2(2*kin)
str(genodata)

genodata[1:5, 1:5]
str(genocovdata)

genocovdata[1:5, 1:5]

compare with the genotypes

genodata[1:5, 1:5]
str(snpdata)

head(snpdata)

plotKinship2
Plot the double kinship matrix

Description

The main function that calls imageKinship2 or histKinship2 depending on value of y argument.

Usage

plotKinship2(x, y = c("image", "hist"))

imageKinship2(x)

histKinship2(x)

Arguments

- **x**
 A square matrix of double kinship coefficients.

- **y**
 A character, the type of the plot. Possible values are "image" and "hist". The default value is "image".
plotManh

Details

imageKinship2 function calls image function from Matrix package.
histKinship2 function plots a histogram based on ggplot2 package.

Examples

```r
# load 'kin' kinship matrix from 'dat50' data set
data(dat50)
k2 <- 2*kin # double kinship matrix

plotKinship2(k2) # equivalent to `imageKinship2(kin2)`

plotKinship2(k2, "hist") # equivalent to `histKinship2(kin2)`
```

plotManh

Plot the association results

Description

Two Manhattan and quantile-quantile (QQ) plots are standard to explore the results from association studies.

Usage

```r
plotManh(A, alpha = 0.05, main, ...)

plotQQ(A, df = 1, main, ...)
```

Arguments

- **A**
 - An object of class solarAssoc.
- **alpha**
 - A numeric value from 0 to 1, the p-value cut-off for Bonferroni multiple-test correction. The default value is 0.05.
- **main**
 - A character string, main argument (title) to a plot function. If the argument is missing, the title contains information about the model formula and the number of SNPs used for plotting.
- **...**
 - additional argument to a plot function.
- **df**
 - An integer value, the degree of freedom. The default value is 1.

Details

plotManh function produces the Manhattan plot based on qqman package. The two red and blue lines, default in the original manhattan function of qqman package, are preserved. An additional black dashed line is added, that depicts the significance level according to Bonferroni multiple-test correction with alpha argument.

plotQQ function produces the QQ plot based on the same qqman package.
plotPed

See Also

solarAssocClass

Examples

Not run:
data(dat50)

assoc <- solarAssoc(trait ~ 1, phenodata, snpdata = genodata, snpmap = snpdata, kinship = kin)

plotManh(assoc) # equivalent to plot(assoc)

plotQQ(assoc) # equivalent to plot(assoc, "qq")

End(Not run)

plotPed

Plot the pedigree

Description

Plot the pedigree tree based on the ID-fields given in phenotypes. Plotting is based on kinship2 package.

Usage

plotPed(data, ped)

Arguments

data A data.frame of phenotypes.
ped An integer or a character value, that indicates the pedigree.

Details

The ID fields are extracted from the data via matchIdNames function. The required fields are ID, FA, MO, SEX and FAMID.

See Also

matchIdNames

Examples

data(dat30)
plotPed(dat30, 1)
plotRes

Plot the residuals of a polygenic model

Description
Plot the residuals on scatter or quantile-quantile plots.

Usage
plotRes(x, labels = FALSE, text.size = 4, ...)
plotResQQ(x, distribution = "norm", ..., line.estimate = NULL, conf = 0.9,
 labels = FALSE, text.size = 4)

Arguments
x An object of class solarPolygenic.
labels A logical value for plotRes function, indicating if the labels of IDs (which
 residuals are outside the 3 * sd interval) are to be plotted. A logical value for
 plotResQQ function, indicating if the samples (their IDs) outside the confidence
 intervals are to be plotted.
text.size An integer, the text size of labels.
... additional arguments.
distribution A character, name of distribution of the residuals. The default value is "norm".
line.estimate Function for estimation of QQ-line.
conf A numeric value between 0 and 1, that represents the confidence boundary.

Details
plotRes function makes a scatter plot of fitted values vs. residuals. Note that the residuals returned
by SOLAR include both random effects, i.e. house-hold, genetic and residuals itself.
plotResQQ function plots quantile-quantile (QQ) plot of the residuals.

See Also
solarPolygenicClass

Examples
Not run:
basic (univariate) polygenic model
mod <- solarPolygenic(trait1 ~ age + sex, dat30)
plotRes(mod)
plotResQQ(mod)
readPhen

Read plain-text table files *phen* and *ped*

Description

The function reads the phenotype and pedigree data in SOLAR format, i.e. plain-text tables.

Usage

```
readPhen(phen.file, sep.phen = "", ped.file, sep.ped = "", 
         header = TRUE, stringsAsFactors = FALSE, id.unique = TRUE, sex.optional)
```

Arguments

- `phen.file`: A character, path to phen file.
- `sep.phen`: A character, the field separator in phen file. The default value is ",".
- `ped.file`: (optional) A character, path to ped file.
- `sep.ped`: A character, the field separator in ped file. The default value is ",".
- `header`: Logical, indicating whether the file contains the names of the variables as its first line. The default value is TRUE.
- `stringsAsFactors`: logical, indicating whether character vectors to be converted to factors. The default value is FALSE.
- `id.unique`: logical, indicating whether the IDs of individuals must be unique. The default value is TRUE.
- `sex.optional`: logical, indicating whether the SEX field must be presented. The default value is TRUE if `ped.file` is specified, and it is FALSE otherwise.

Value

A data frame of phenotype data merged from two phen and ped files (merged by ID filed).
snpdata2solar

Export snp genotypes, genotype covariates and amp to SOLAR

Description

A list of functions allows to pass SNPs data from R to SOLAR.

Usage

snpdata2solar(mat, dir)

snpcovdata2solar(mat, dir, nGTypes = FALSE, out)

snpmap2solar(map, dir)

Arguments

mat
A matrix of genotypes or genotypes as covariates to be exported.
dir
A character with path where SOLAR files to be created.
nGTypes
Logical, whether a column nGTypes to be added to snp.genocov file. The default value is FALSE.
out
(optional) A list, that contains the names for snp.genocov and snp.geno-list files. This argument is internally used in solarAssoc function.
map
A data frame with annotation (map) information for SNPs.

Details

snpdata2solar function (1) exports the data set of genotypes stored in mat into SOLAR files, (2) runs solar command 'snp load solar.gen' to check the data is loaded ok; (3) if two output files were not created, throws an error.

snpcovdata2solar function emulates the ‘snp load’ SOLAR command. Two output files are produced: ‘snp.genocov’ and ‘snp.geno-list’. The steps are the following: (1) add prefix ‘snp_’ to SNP names; (2) (optional) compute stats on # genotyped individuals (columns ‘nGTypes’); (3) write data and metadata into files.

snpmap2solar function (1) separates data by chromosome; (2) write the table into SOLAR map file; (3) check if the map file is OK by running SOLAR command load map -basepair <filename>

Note

In association analysis (solarAssoc function) the step of loading SNP maps is skipped. It seems that SOLAR does not use this information when doing association.
Examples

Example of `snp.genocov` file:
id,nGT,Types,snp_s1,snp_s2,...
1,50,0,0,...
2,50,0,0,...

Example of `snp.geno-list` file:
snp_s1
snp_s2
...

solar

Call SOLAR program from R

Description

The function calls SOLAR via `system` function, that invokes the OS command (which is `solar`) specified by the command argument. SOLAR is required to be installed in the OS.

Usage

`solar(cmd, dir, result = TRUE, ignore.stdout = TRUE, ignore.stderr = FALSE, ...)`

Arguments

- `cmd` A vector of characters, that contains the commands to be passed to SOLAR.
- `dir` A character, path to the directory, where SOLAR-related files (phenotypes, pedigree, markers) were previously created.
- `result` A logical, internal argument to be passed to `system` function. The default value is TRUE.
- `ignore.stdout` A logical, `ignore.stdout` argument to be passed to `system` function. The default value is FALSE.
- `ignore.stderr` A logical, `ignore.stderr` argument to be passed to `system` function. The default value is TRUE.
- `...` additional arguments (which are not used).

Details

This is the core function in the interface between R and SOLAR.
Run association analysis.

Description

The association analysis is conducted in the following sequence: parse input files of SNP markers, export data to a directory by df2solar function, run the polygenic analysis in a directory, run the association analysis on the top of the polygenic analysis, parse output files and store results in an object of solarAssoc class (see solarAssocClass).

Usage

solarAssoc(formula, data, dir, kinship, traits, covlist = "1", snpformat, snpdata, snpcovdata, snnmap, snplist, snpind, genocov.files, snplists.files, snnmap.files, mga.files, plink.ped, plink.map, plink.raw, assoc.outformat = c("df", "outfile", "outfile.gz"), assoc.outdir, assoc.options = "", cores = getOption("cores"), batch.size = 1000, ..., verbose = 0)

Arguments

formula an object of class formula or one that can be coerced to that class. It is a symbolic description of fixed effects (covariates) to be fitted.
data A data frame containing the variables in the model, including ID fields needed to construct random effects: genetic and house-hold (both optional). Other classes such as list, environment or object coercible by as.data.frame to a data frame are not supported.
dir an optional character string, the name of directory, where SOLAR performs the analysis. In this case, the analysis within related input/output files is conducted in the given folder instead of a temporary one (the default work flow).
kinship A matrix of the kinship coefficients (custom kinship matrix). The IDs are required to be in row and column names.
traits a vector of characters to specify trait(s) in the model. It is alternative to the formula interface.
covlist a vector of characters to specify fixed effects (covariates) in the model. It is alternative to the formula interface. The default value is "1".
snpformat a character, the format of SNP data passed by snpdata argument. Currently, this argument is not used.
snpdata A matrix of SNP data. SNPs are given in the columns, and individuals correspond to the rows. The IDs of individuals are required to be in row and column names.
snpcovdata A matrix of SNP data, which are converted to covariates (numeric format). SNPs are given in the columns, and individuals correspond to the rows. The IDs of individuals are required to be in row and column names.
solarAssoc

snpmapping a data.frame of annotation for SNPs.

snplist a vector of characters, the names of SNPs to be used in the analysis. This argument may be used when a subset of SNPs is of the interest.

snpind a vector of positive integers, the indices of SNPs to be used in the analysis. This argument may be used when a subset of SNPs is of the interest.

genocov.files A vector of characters, the file paths to genocov SOLAR files.

snplists.files A vector of characters, the file paths to snplists SOLAR files.

snpmap.files A vector of characters (optional), the file paths to snpmap SOLAR files.

mga.files A list with 2-3 elements, where each element is a vector of characters. This argument is an alternative to the other three genocov.files, snplists.files and snpmap.files. The element 3 of the list is optional.

plink.ped A character, the file path to genotype data in plink .ped format. Two columns are used per genotype.

plink.map A character, the file path to genotype annotation data in plink .map format.

plink.raw A character, the file path to genotype data in allele-dosage plink format (an example plink command: plink --noweb --file dat50 --recodeA). One column is used per genotype.

assoc.outformat A character, the output format. Possible values are "df", "outfile" and "outfile.gz". Currently, the only supported output format is "df". That means the table of results is stored in snpf slot of a returned object.

assoc.outdir A character, the path to the output directory. Currently, this argument is not used.

assoc.options A character, specific options to be passed to mga SOLAR command.

cores A positive integer, the number of cores for parallel computing. The default value is taken from getOption("cores"). If the default value is NULL then the number of cores is 1.

batch.size An integer, the number of SNPs per batch for parallel computation. The default value is 1000.

Arguments to be passed to solarPolygenic function. For example, one of such arguments may be polygenic.settings = "option EnableDiscrete 0". Arguments of solarMultipoint, which are also passed to solarPolygenic, include formula, data, dir, kinship, traits and covlist.

verbose An non-negative integer of the verbose level. The default value is 0.

Note

solarAssoc function accepts input genetic data in three formats: SOLAR (genocov.files, snplists.files, snpmap.files and mga.files arguments), R data frame or matrix (snpdata, snpcovdata and snpmap arguments), and plink (plink.ped, plink.map and plink.raw arguments).

For large-size problems, the user is recommended to prepare the genetic data in SOLAR format and to split them into batches of size, for example, 1,000 markers. The use of the other two R and plink formats is not optimized for large-scale scenarios.
Examples

```r
### load data
data(dat50)
dim(phenodata)
dim(kin)
dim(genodata)

### Not run:
### basic (univariate) association model with a custom kinship
mod <- solarAssoc(trait=age+sex, phenodata,
                  kinship = kin, snpdata = genodata)
mod$snpf # table of results for 50 SNPs

### End(Not run)
```

`solarAssocClass`
S3 class `solarAssoc`.

Description

S3 class `solarAssoc`.

Usage

```r
## S3 method for class 'solarAssoc'
print(x, ...)

## S3 method for class 'solarAssoc'
plot(x, y = "manh", ...)

## S3 method for class 'solarAssoc'
summary(object, alpha = 0.05, ...)
```

Arguments

- `x`
 An object of class `solarAssoc`.

- `...`
 Additional arguments.

- `y`
 Character argument for `plot` method, indicating the type of plot. The default value is "manh".

- `object`
 An object of class `solarAssoc`.

- `alpha`
 Numeric argument between 0 and 1 for `summary` method, indicating the significance level after Bonferroni multiple-test correction. The default value is 0.05.
solarBaesAvgPolygenicClass

S3 class solarBaesAvgPolygenic

Description

S3 class solarBaesAvgPolygenic

Usage

S3 method for class 'solarBaesAvgPolygenic'
print(x, ...)

S3 method for class 'solarBaesAvgPolygenic'
summary(object, ...)

Arguments

x An object of class solarBaesAvgPolygenic.

... Additional arguments.

object An object of class solarBaesAvgPolygenic.

solarKinship2

Compute empirical double kinship matrix by SOLAR

Description

The function runs SOLAR to evaluate the double kinship matrix of the given data.

Usage

solarKinship2(df, dir, ...)

Arguments

df A data frame that contains both phenotype and pedigree data. To be passed to df2solar function.

dir (optional) A character with path to a directory, where SOLAR files to be created. If this argument is missing, a temporary folder is created and further removed, when the job is done. To be passed to df2solar function.

... Additional arguments to be passed to df2solar.
Details

The function (1) puts the data df in SOLAR format, (2) separates it into two parts, pedigree and phenotypes, and then (3) exports both data sets in the directory dir, (4) read the specific `phi2.gz` file, where the kinship coefficients multiplied by 2 are stored by SOLAR.

Note

IDs in df are assumed to be not duplicated.

solarMultipoint

Run multipoint linkage analysis.

Description

The linkage analysis is conducted in the following sequence: parse input files of multipoint IBD matrices, export data to a directory by df2solar function, run the polygenic analysis in a directory, run the linkage analysis on the top of the polygenic analysis, parse output files and store results in an object of solarMultipoint class (see solarMultipointClass).

Usage

solarMultipoint(formula, data, dir, kinship, traits, covlist = "1", mibddir, chr, interval, multipoint.options = "", multipoint.settings = "", cores =getOption("cores"), ..., verbose = 0)

Arguments

formula an object of class formula or one that can be coerced to that class. It is a symbolic description of fixed effects (covariates) to be fitted.
data A data frame containing the variables in the model, including ID fields needed to construct random effects: genetic and house-hold (both optional). Other classes such as list, environment or object coercible by as.data.frame to a data frame are not supported.
dir an optional character string, the name of directory, where SOLAR performs the analysis. In this case, the analysis within related input/output files is conducted in the given folder instead of a temporary one (the default work flow).
kinship A matrix of the kinship coefficients (custom kinship matrix). The IDs are required to be in row and column names.
traits a vector of characters to specify trait(s) in the model. It is alternative to the formula interface.
covlist a vector of characters to specify fixed effects (covariates) in the model. It is alternative to the formula interface. The default value is "1".
mibddir A character, the name of directory with files representing the IBD matrices in SOLAR format. These matrices can be evaluated by SOLAR or by other program. See SOLAR help for ibd command for more details (http://solar.txbiomedgenetics.org/doc/91.appendix_1_text.html#ibd).
solarMultipoint

chr A character or one that can be coerced to that class, the value to be passed to SOLAR command chromosome. If it is missing, the default value is "all". See SOLAR help for chromosome command for more details (http://solar.tbxbiomedgenetics.org/doc/01.appendix_1_text.html#chromosome).

interval A character or one that can be coerced to that class, the value to be passed to SOLAR command interval. If it is missing, the default value is 1. See SOLAR help for interval command for more details.

multipoint.options A character of options to be passed to multipoint SOLAR command. For example, one or more LOD scores may be specified to run multi-pass linkage analysis. If the argument is "3", that means a two-pass linkage scan with condition of the highest LOD of 3 to start the second pass. See SOLAR help page for multipoint command for more details (http://solar.tbxbiomedgenetics.org/doc/01.appendix_1_text.html#multipoint). The default value is "".

multipoint.settings A vector of characters, that contains SOLAR commands to be executed just before calling multipoint. For example, the fine mapping for the linkage scan can be disabled by setting the given argument to "finemap off". The default value is "".

cores A positive integer, the number of cores for parallel computing. The default value is taken from getOption("cores"). If the default value is NULL then the number of cores is 1.

... Arguments to be passed to solarPolygenic function. For example, one of such arguments may be polygenic.settings = "option EnableDiscrete 0". Arguments of solarMultipoint, which are also passed to solarPolygenic, include formula, data, dir, kinship, traits and covlist.

verbose An non-negative integer of the verbose level. The default value is 0.

Note

The user is responsible for computation of the MIBD matrices required by solarMultipoint function via mibddir argument. Estimation of the IBD matrices is out of the scope of solarius package. More information is available in http://solar.tbxbiomedgenetics.org/doc/05.chapter.html.

Examples

```r
### load phenotype data
data(dat30)

### load marker data
mibddir <- system.file('extdata', 'solarOutput',
  'solarMibdsCsv', package = 'solarius')
list.files(mibddir)

### Not run:
### basic (univariate) linkage model
mod <- solarMultipoint(trait1 ~ 1, dat30,
```
solarMultipointClass

S3 class solarMultipoint.

Description

S3 class solarMultipoint.

Usage

S3 method for class 'solarMultipoint'
print(x, ...)

S3 method for class 'solarMultipoint'
plot(x, pass = 1, main, xlab, faceting = TRUE, ...)

S3 method for class 'solarMultipoint'
summary(object, ...)

S3 method for class 'solarMultipoint'
tabplot(object, LOD.thr = 1.5, plot.null = TRUE, ...)

Arguments

x An object of class solarMultipoint.
...

Additional arguments.

pass Integer argument for plot method, indicating whether which pass in multi-pass linkage scan to be plotted. The default value is 1.

main An argument for plot method.
solarMultivarClass

xlab An argument for plot method.
faceting An argument for plot method. The default value is TRUE.
object An object of class solarMultipoint.
LOD.thr An argument for tabplot method. The default value is 1.5.
plot.null An argument for tabplot method. The default value is TRUE.

solarMultivarClass S3 class solarMultivar.

Description

S3 class solarMultivar.

Usage

```r
## S3 method for class 'solarMultivar'
print(x, ...)  
```

Arguments

- `x` An object of class solarMultivar.
- `...` Additional arguments.

solarPar Get a parameter value from SOLAR model files.

Description

Get a parameter value from SOLAR model files.

Usage

```r
solarPar(mod, par)
solarParIndividuals(mod)
solarParH2rP(mod)
solarParKurtosis(mod)
solarParCovlistP(mod)
solarParCovlistChi(mod)
```
solarParRhoP(mod)
solarParRhoPSE(mod)
solarParRhoPP(mod)
solarParRhoPOK(mod)
solarParPvar(mod, modelname = "null0.mod")

Arguments

- **mod**: An object of `solarPolygenic` class. See `solarPolygenicClass`.
- **par**: A character, the parameter name.
- **modelname**: A character, the file name of a model. The default value is "null0.mod". This argument is only for `solarParPvar` function.

Value

A value of the given parameter.

S3 class `solarPolyAssoc`.

S3 class `solarPolyAssoc`.

Usage

```r
## S3 method for class 'solarPolyAssoc'
print(x, ...)
```

Arguments

- **x**: An object of class `solarPolyAssoc`.
- **...**: Additional arguments.
Run polygenic analysis.

Description

The polygenic analysis is conducted in the following sequence: export data to a directory by `df2solar` function, form a SOLAR call with a list of settings and options, execute SOLAR by `solar` function, parse output files and store results in an object of `solarPolygenic` class (see `solarPolygenicClass`).

Usage

```r
solarPolygenic(formula, data, dir, kinship, traits, covlist = "1",
    covtest = FALSE, screen = FALSE, household = as.logical(NA),
    transforms = character(0), alpha = 0.05, polygenic.settings = ",",
    polygenic.options = ",", verbose = 0, ...)
```

Arguments

- `formula`: an object of class `formula` or one that can be coerced to that class. It is a symbolic description of fixed effects (covariates) to be fitted. If the model does not have any covariates, then the formula looks like `trait ~ 1`, where 1 means the trait mean parameter.
- `data`: A data frame containing the variables in the model, including ID fields needed to construct random effects: genetic and household (both optional). Other classes such as list, environment or object coercible by `as.data.frame` to a data frame are not supported.
- `dir`: an optional character string, the name of directory, where SOLAR performs the analysis. In this case, the analysis within related input/output files is conducted in the given folder instead of a temporary one (the default work flow).
- `kinship`: A matrix of the kinship coefficients (custom kinship matrix). The IDs are required to be in row and column names. Currently, it does not work for unrelated individuals (SOLAR issue).
- `traits`: a vector of characters to specify trait(s) in the model. It is alternative to the formula interface.
- `covlist`: a vector of characters to specify fixed effects (covariates) in the model. It is alternative to the formula interface. It could be convenient to indicate covariates in the SOLAR format, for example, "age+1,2,3#sex" that means `sex age agesex age^2 age^2sex age^3`.
- `covtest`: a logical value, indicating whether to test the significance of the fixed effects (covariates). Likelihood ratio test (LRT) is used by SOLAR. polygenic SOLAR command is called with a combination of `-screen -all` options. As a result, cf slot will have p-values in `pval` column. The default value is `FALSE`.
- `screen`: a logical value, indicating whether to screen the fixed effects (covariates). polygenic SOLAR command is called with `-screen` option. As a result, only significant covariates will be maintained in the model. The default value is `FALSE`.

a logical value, saying to **forcedly** include or exclude the house-hold effect. The default value is \texttt{as.logical(NA)}, that means the following behavior in SOLAR. If \texttt{data} has \texttt{hhid} or similar column, then the house-hold effect is added to the model and tested by SOLAR. Otherwise, there is no any variable indicating the house-hold effect neither in \texttt{data} nor in the model. If \texttt{household} is \texttt{TRUE}, then polygenic SOLAR command is called with \texttt{-keephouse} option. If \texttt{household} is \texttt{FALSE}, then house SOLAR command is not called previously to calling polygenic SOLAR command (modeling of the house-hold effect is omitted).

a named vector of characters, indicating the transformations to be applied to traits. A list of available transforms is returned by function \texttt{availableTransforms}. If the model is univariate, the name of transformation is not necessary and can be omitted. The default value is \texttt{character(0)}.

a number between 0 an 1, that is the value of \texttt{-prob} option of polygenic SOLAR command. That is the probability level for keeping covariates as significant. The default value in SOLAR is 0.1, but the default value here is 0.05. This parameter makes the polygenic SOLAR call to be like polygenic \texttt{-prob 0.05}.

A vector of characters, that contains SOLAR commands to be executed just before calling polygenic. For example, the liability threshold model applied to a binary trait (the default behavior in SOLAR). This behavior is disabled by setting the given argument to "option EnableDiscrete 0". The default value is "".

A character of options to be passed to polygenic SOLAR command. For example, the comprehensive analysis of a bivariate model might be parametrized by setting this parameter to "-testrhoe -testrhog -testrhoc -testrhop -rhose". See SOLAR help page for polygenic command for more details (http://solar.txbiomedgenetics.org/doc/91.appendix_1_text.html#polygenic). The default value is "".

An non-negative integer of the verbose level. The default value is 0.

additional parameters to be passed to other functions called inside of solarPolygenic. For example, it might be a parameter \texttt{log_base} for \texttt{transformTrait} function in the case \texttt{transform} is equal to "log".

An object of solarPolygenic class. See \texttt{solarPolygenicClass}.

Examples

```r
# load data and check out ID names
data(dat30)
mach1dNames(names(dat30))

# Not run:
### basic (univariate) polygenic model
mod <- solarPolygenic(trait1 ~ age + sex, dat30)
```
(univariate) polygenic model with parameters
mod <- solarPolygenic(trait1 ~ age + sex, dat30, covtest = TRUE)
mod$cf # look at test statistics for covariates

basic (bivariate) polygenic model
mod <- solarPolygenic(trait1 + trait2 ~ 1, dat30)
mod$vcf # look at variance components

(bivariate) polygenic model with trait specific covariates
mod <- solarPolygenic(trait1 + trait2 ~ age + sex(trait1), dat30)

(bivariate) polygenic model with a test of the genetic correlation
mod <- solarPolygenic(trait1 + trait2 ~ 1, dat30, polygenic.options = "-testrhog")
mod$lf # look at a p-value of the test

transforms for (univariate) polygenic model
mod <- mod <- solarPolygenic(trait1 ~ 1, dat30, transforms = "log")

transforms for (bivariate) polygenic model
mod <- solarPolygenic(trait1 + trait2 ~ 1, dat30,
 transforms = c(trait1 = "log", trait2 = "inormal"))

SOLAR format of introducing covariates
mod <- solarPolygenic(traits = "trait1", covlist = "age^1,2,3#sex", data = dat30)
mod$cf # 8 covariate terms will be printed

End(Not run)

solarPolygenicClass

S3 class solarPolygenic.

Description

S3 class solarPolygenic.

Usage

```r
## S3 method for class 'solarPolygenic'
print(x, ...)
```

```r
## S3 method for class 'solarPolygenic'
summary(object, ...)
```

```r
## S3 method for class 'solarPolygenic'
residuals(object, trait = FALSE, ...)
```
Arguments

- `x`: An object of class `solarPolygenic`.
- `...`: Additional arguments.
- `object`: An object of class `solarPolygenic`.
- `trait`: Logical argument for residuals method, indicating whether values of trait to be returned instead of residuals. The default value is FALSE.

solarReadFiles
Read SOLAR output files in a directory

Description

The function is used, for example, to read the files in the output directory of the polygenic model.

Usage

solarReadFiles(dir)

Arguments

- `dir`: A character, path to the directory.

Value

A list with file contents acquired by `readLines` function.

tabplot
S3 method tabplot

Description

S3 method tabplot

Usage

tabplot(object, ...)

Arguments

- `object`: An object.
- `...`: Additional arguments.
transformData Apply transforms to a data set.

Description
The function looks for traits in columns of input data frame, call transformTrait function per trait, and rename the traits. By default, the name of a transformed trait is updated to one with a prefixed given in transform.prefix argument (the default value is "tr_ "). Such renaming is assumed to make the user aware that the trait is transformed.

Usage
transformData(transforms, data, transform.prefix = "tr_", ...)

Arguments
- transforms: A named character vector of transforms, where traits are given in the names of the vector.
- data: A matrix or a data.frame, where the column names represent the names of traits.
- transform.prefix: A character vector, that is a prefix to be added to the name of transformed trait. The default value is "tr_".
- ...: Additional parameters to be passed to transformTrait function called inside of transformData. For example, it might be a parameter log.base for transformTrait function in the case transform is equal to "log".

Details
This function is internally called in solarPolygenic if transforms argument is specified. In this case of the polygenic analysis, the transform operation is invisible to the user. However, it is recommended to manually transform traits in other linkage and association analyses.

Value
A matrix or a data.frame of the transformed data.

See Also
availableTransforms, transformTrait
transformTrait

Transform a trait.

Description

Transform a trait.

Usage

transformTrait(x, transform, mult = 1, ...)

Arguments

x a numeric vector (of a trait).
transform a character vector, the name of transformation. Possible values are returned by availableTransforms function.
mult A numeric, the multiplicator for the transformed value of a trait. The default value is 1.
... additional parameters passed to internal transform_trait_* functions. Possible parameters might be log.base, log.intercept ("log" transformation).

Value

A numeric vector, which contains the transformed values (of a trait).

See Also

availableTransforms, transformData

Examples

library(plyr)
library(ggplot2)

data(dat30)
dat <- mutate(dat30,
inormal_trait1 = transformTrait(trait1, "inormal"))

ggplot(dat, aes(trait1)) + geom_histogram()
ggplot(dat, aes(inormal_trait1)) + geom_histogram()
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>annotate, 3</td>
</tr>
<tr>
<td>annotateSNPs, 3, 3</td>
</tr>
<tr>
<td>availableTransforms, 4, 30, 33, 34</td>
</tr>
<tr>
<td>dat30, 5</td>
</tr>
<tr>
<td>df2solar, 6, 20, 24, 29</td>
</tr>
<tr>
<td>explainedVarProp, 7</td>
</tr>
<tr>
<td>genocovdat30 (dat30), 5</td>
</tr>
<tr>
<td>genocovdata (phenodata), 12</td>
</tr>
<tr>
<td>genodata (phenodata), 12</td>
</tr>
<tr>
<td>getFormulaStr, 7</td>
</tr>
<tr>
<td>histKinship2 (plotKinship2), 13</td>
</tr>
<tr>
<td>imageKinship2 (plotKinship2), 13</td>
</tr>
<tr>
<td>kin (phenodata), 12</td>
</tr>
<tr>
<td>loadExamplesPhen, 8</td>
</tr>
<tr>
<td>loadMulticPhen, 8</td>
</tr>
<tr>
<td>mapdat30 (dat30), 5</td>
</tr>
<tr>
<td>matchIDNames, 9, 15</td>
</tr>
<tr>
<td>matchMapNames, 10</td>
</tr>
<tr>
<td>modelPar, 11</td>
</tr>
<tr>
<td>modelParCores (modelPar), 11</td>
</tr>
<tr>
<td>modelParCPUtime (modelPar), 11</td>
</tr>
<tr>
<td>modelParNumBatches (modelPar), 11</td>
</tr>
<tr>
<td>package.file, 11</td>
</tr>
<tr>
<td>phenodata, 12</td>
</tr>
<tr>
<td>plot.solarAssoc (solarAssocClass), 22</td>
</tr>
<tr>
<td>plot.solarAssoc (solarAssocClass)</td>
</tr>
<tr>
<td>plot.solarAssoc (solarMultiPointClass), 26</td>
</tr>
<tr>
<td>plotKinship2, 13</td>
</tr>
<tr>
<td>plotManh, 14</td>
</tr>
<tr>
<td>plotPed, 15</td>
</tr>
<tr>
<td>plotQQ (plotManh), 14</td>
</tr>
<tr>
<td>plotRes, 16</td>
</tr>
<tr>
<td>plotResQQ (plotRes), 16</td>
</tr>
<tr>
<td>print.solarAssoc (solarAssocClass), 22</td>
</tr>
<tr>
<td>print.solarAssoc (solarMultiPointClass), 26</td>
</tr>
<tr>
<td>print.solarAssoc (solarMultiPointClass)</td>
</tr>
<tr>
<td>print.solarMultivar (solarMultiVarClass), 27</td>
</tr>
<tr>
<td>print.solarMultivar (solarMultiVarClass)</td>
</tr>
<tr>
<td>print.solarPolyAssoc (solarPolyAssoc), 28</td>
</tr>
<tr>
<td>print.solarPolyAssoc (solarPolyAssoc)</td>
</tr>
<tr>
<td>print.solarPolygenic (solarPolygenicClass), 31</td>
</tr>
<tr>
<td>print.solarPolygenic (solarPolygenicClass)</td>
</tr>
<tr>
<td>readPhen, 8, 17</td>
</tr>
<tr>
<td>residuals.solarPolygenic (solarPolygenicClass), 31</td>
</tr>
<tr>
<td>snpcovdata2solar (snpdata2solar), 18</td>
</tr>
<tr>
<td>snpdata (phenodata), 12</td>
</tr>
<tr>
<td>snpdata2solar, 18</td>
</tr>
<tr>
<td>snpmap2solar (snpdata2solar), 18</td>
</tr>
<tr>
<td>solar, 19, 29</td>
</tr>
<tr>
<td>solarAssoc, 20</td>
</tr>
<tr>
<td>solarAssocClass, 11, 15, 20, 22</td>
</tr>
<tr>
<td>solarBaeyesAvgPolygenicClass, 23</td>
</tr>
<tr>
<td>solarKinship2, 23</td>
</tr>
<tr>
<td>solarMultipoint, 24</td>
</tr>
<tr>
<td>solarMultipointClass, 11, 24, 26</td>
</tr>
<tr>
<td>solarMultivarClass, 27</td>
</tr>
<tr>
<td>solarPar, 27</td>
</tr>
<tr>
<td>solarParCovlistChi (solarPar), 27</td>
</tr>
<tr>
<td>solarParCovlistP (solarPar), 27</td>
</tr>
<tr>
<td>solarParH2rP (solarPar), 27</td>
</tr>
<tr>
<td>solarParIndividuals (solarPar), 27</td>
</tr>
<tr>
<td>solarParKurtosis (solarPar), 27</td>
</tr>
<tr>
<td>solarParPvar (solarPar), 27</td>
</tr>
<tr>
<td>solarParRhoP (solarPar), 27</td>
</tr>
<tr>
<td>solarParRhoPOK (solarPar), 27</td>
</tr>
<tr>
<td>solarParRhoPP (solarPar), 27</td>
</tr>
</tbody>
</table>
solarParRhoPSE (solarPar), 27
solarPolyAssoc, 28
solarPolygenic, 21, 25, 29
solarPolygenicClass, 7, 11, 16, 28–30, 31
solarReadFiles, 32
summary.solarAssoc (solarAssocClass), 22
summary.solarBaeyksAvgPolygenic
 (solarBaeyksAvgPolygenicClass), 23
summary.solarMultipoint
 (solarMultipointClass), 26
summary.solarPolygenic
 (solarPolygenicClass), 31
tabplot, 32
tabplot.solarMultipoint
 (solarMultipointClass), 26
transformData, 33, 34
transformTrait, 30, 33, 34