Package ‘wgaim’

June 26, 2015

Type Package
Title Whole Genome Average Interval Mapping for QTL Detection using Mixed Models
Version 1.4-10
Date 2015-06-026
Author Julian Taylor <julian.taylor@adelaide.edu.au>, Simon Diffey <simon.diffey@dpi.nsw.gov.au>, Ari Verbyla <ari.verbyla@csiro.au> and Brian Cullis <bcullis@uow.edu.au>.
Maintainer Julian Taylor <julian.taylor@adelaide.edu.au>
Depends R (>= 2.0.0), qtl, lattice
SystemRequirements asreml-R 3.x
Description Integrates sophisticated mixed modelling methods with a whole genome approach to detecting significant QTL in linkage maps.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2015-06-26 10:55:21

R topics documented:

wgaim-package .. 2
cross2int .. 3
genoCxR ... 6
genoRxK ... 6
genoSxT ... 7
link.map.cross ... 8
link.map.default ... 9
link.map.wgaim .. 12
out.stat .. 14
phenoCxR ... 15
phenoRxK ... 16
phenoSxT ... 17
Description

This package uses sophisticated mixed modelling methods with the addition of allowing a whole genome approach to detecting significant QTL in linkage maps.

Details

Welcome to version 1.x of wgaim! The documentation given in this help file is only brief and users should eventually consult the vignette available with the package by typing vignette("wgaim") at prompt.

Version 1.x package highlights:

1. The inclusion of high dimensional genetic data.
2. Users have a choice of whole genome marker or interval analysis.
3. Selection and estimation of QTL effects using the implementation of Verbyla et. al (2012).

Deprecated functions:

1. read.interval: This function used to read in and convert genetic marker data to "interval" objects ready for analysis by wgaim. Users are now directed to use read.cross from the qtl package and convert to an "interval" object by using the conversion function cross2int.
2. wmerge: This function seamlessly merged phenotypic and "interval" genetic data. This is not required as the merging is contained within the wgaim call.

This package builds on the qtl package of Broman by including additional functions for whole genome QTL analysis of a full linkage map using linear mixed models.

The package provides a user friendly function cross2int for the conversion of "cross" objects created using read.cross in Bromans qtl package into an "interval" object or use in wgaim. Specifically, cross2int performs additional calculations to impute missing marker values on each of the chromosomes across the full linkage map and also provides users with genetic distances and
recombination fractions for the intervals. The returned object retains the class structure of an object created with `read.cross` and thus allows further use with the `qtl` package if desired.

The package also provides a very neat graphical display of the chromosomes of a "cross" object. The method function `link.map` displays the full or subsetted linkage map according to chromosome or distance as well as displays non-overlapping marker names on the right hand side.

QTL analysis of the is achieved using the function `wgaim` which, as its first argument, requires an `asreml` base model. Version 1.x of `wgaim` allows users to include high dimensional genetic components in a `wgaim` analysis (See `wgaim.asreml` for more details or the soon to be released vignette companion to this version). For convenience the default tracing of results from the `asreml` models is outputted to a file for further inspection. For diagnostic purposes, the outlier statistics from each iteration can be viewed using `out.stat`. Diagnostics of the likelihood ratio test performed for each forward step can be displayed using `tr.wgaim`. The function also displays an incremental probability value matrix of the QTL ascertained at each forward step of the algorithm.

Summary and print methods are available for the returned "wgaim" object and provide users with a detailed report on the QTL, their size, their flanking markers, significance (including LOD score if desired) and approximate contribution to the genetic variance. The returned "wgaim" object may also be plotted using the method function `link.map`. This function plots the full linkage map subsetted for chromosome and distance as well as provides shaded QTL regions and highlighted flanking markers. Plotting of QTL for multiple traits is also possible (see `link.map.default`).

Author(s)

Julian Taylor, Simon Diffey, Ari Verbyla and Brian Cullis
Maintainer: Julian Taylor <julian.taylor@csiro.au>

References

See Also

`qtl-package`

cross2int

Convert a cross genetic object to an interval object

Description

Converts an object of class "cross" to an object with class "interval". The function also imputes missing markers.
Usage

cross2int(fullgeno, missgeno = "MartinezCurnow", rem.mark = TRUE, id = "id", subset = NULL)

Arguments

fullgeno an R/qtl cross object that inherits one of the class structures "bc", "dh", "riself".

missgeno a character string determining how missing values in the linkage map should be imputed. If "Broman", then missing values are imputed according to Bromans rules. If "MartinezCurnow" then missing values are imputed according to the rules of Martinez & Curnow (1994) (see reference list). The default is "MartinezCurnow" (see Details).

rem.mark logical value. If TRUE co-locating marker sets are condensed to form consensus markers (see Details). Defaults to TRUE.

id a character string or name of the unique identifier for each row of genotype data (see Details). Defaults to "id"

subset a possible character vector naming the subset of chromosomes to be returned. Defaults to NULL implying return all chromosomes.

Details

This function provides the conversion of genetic data objects that have already been created using read.cross from Bromans qtl package to "interval" objects ready for use with wgaim. User should be aware that this function is restricted to populations with two genotypic states. Therefore fullgeno must inherit one of the class structures "bc", "dh", "riself".

During the conversion process 3 important linkage map calculations are checked.

1. The map may be subsetted using the subset argument

2. If rem.mark = TRUE then co-located marker sets are reduced to form single consensus markers before missing values are imputed. The marker similarity is determined by the genetic distances that are given in the map for each linkage group. If a set of markers co-locate the name of the first marker is chosen and a single consensus marker is determined by coalescing the genetic information from all markers in the set. A "(C)" is placed after the marker name for easy identification. The markers removed from each set is returned with the object and placed under "cor.markers" for inspection if required.

3. Missing values are imputed according to the argument given by missgeno. This imputation results in a complete version of the marker data for each chromosome which is then used to create the interval data "intval". The complete marker data for each chromosome can be obtained from the "imputed.data" element of the returned list. It is therefore also possible to perform whole genome marker analysis using wgaim. See wgaim.asreml for more details.

Note: this last step is crucial as a complete set of marker or interval data is required for analysis with wgaim.
Value

a list of class "cross" that also inherits the class "interval". The list contains the following components

genox This is a list with elements named by the corresponding names of the chromosomes. Each chromosome is itself a list with six elements: "data" is the actual estimated map matrix with rows as individuals named by "id" and markers as columns; "map" is a vector of marker positions on the corresponding chromosome; "imputed.data" is identical to "data" matrix but with all NA's replaced by imputed values according to the rules of "missgeno"; "dist" contains the genetic distance between adjacent markers or the genetic distances of the intervals; "theta" contains the recombination fractions for each interval; "intval" contains the recalculated intervals based on the recombination fractions and the missing marker information.

cor.markers If rem.mark = TRUE, a three column matrix with each row describing which pairwise markers are correlated and what chromosome they are from.

pheno A data.frame of phenotypic information with rows as individuals read in from read.cross. A copy of the column named by the "id" argument can be found here (see read.cross).

Author(s)

Julian Taylor, Simon Diffey, Ari Verblya and Brian Cullis

References

See Also

read.cross

Examples

```r
## Not run:
# read in linkage map from a rotated .CSV file with "id" as the
# identifier for each unique row

wpath <- system.file("extdata", package = "wgaim")
genoSxT <- read.cross("csv", file="genoSxT.csv", genotypes=c("AA","BB"),
na.strings = c("-","NA"), dir = wpath)
genoSxT <- cross2int(genoSxT, missgeno="MartinezCurnow", id = "id")
```
plot linkage map

link.map(genoSxT, cex = 0.5)

End(Not run)

genocxR Genotypic marker data for Cascades x RAC875-2 doubled haploid population in R/qtl format

Description

Linkage map marker data for the Cascades x RAC875-2 doubled haploid population in the form of an R/qtl object.

Usage

data(genoCXR)

Format

This data relates to a linkage map of 663 markers genotyped on 93 individuals. The linkage map consists of 42 linkage groups spanning the whole genome. Coincident markers have been removed reducing the linkage map to 458 markers. Map distances have been estimated using `read.cross` with the haldane mapping function. The data object is therefore in R/qtl format. See `read.cross` documentation for more details on the format of this object.

Examples

data(genoCXR, package = "wgaaim")
link.map(genoCXR, cex = 0.5)

genorxK Genotypic marker data for RAC875 x Kukri doubled haploid population in R/qtl format

Description

Linkage map marker data for the RAC875 x Kukri doubled haploid population in the form of an R/qtl object.
Usage

data(phenoSxT)

Format

This data relates to a linkage map of 500 genetic markers genotyped on 368 individuals from the RAC875 x Kukri population. The linkage map consists of 21 linkage groups with varying numbers of markers. Map distances have been estimated using `read.cross` with the kosambi mapping function. The data object is therefore in R/qtl format. See `read.cross` documentation for more details on the format of this object.

Examples

data(genoRxK, package = "wgaim")
link.map(genoRxK, cex = 0.5)

description

Linkage map marker data for the Sunco x Tasman doubled haploid population in the form of an R/qtl object.

Usage

data(phenoSxT)

Format

This data relates to a linkage map of 287 genetic markers genotyped on 190 individuals from the Sunco x Tasman population. This set is reduced from the original 345 markers (a mixture of AFLP, RFLP and microsatellite markers and protein analysis). The reduction was created by discarding 58 markers which were co-located with one or more other markers. The linkage map consists of 21 linkage groups with varying numbers of markers. Map distances have been estimated using `read.cross` with the kosambi mapping function. The data object is therefore in R/qtl format. See `read.cross` documentation for more details on the format of this object.

Examples

data(genoSxT, package = "wgaim")
link.map(genoSxT, cex = 0.5)
Plot a genetic linkage map

Description

Neatly plots the genetic linkage map with marker locations and marker names.

Usage

```r
## S3 method for class 'cross'
link.map(object, chr, chr.dist, marker.names = "markers",
tick = FALSE, squash = TRUE, m.cex = 0.6, ...)
```

Arguments

- `object`: object of class "cross"
- `chr`: character string naming the subset of chromosomes to plot
- `chr.dist`: a list containing named elements "start" and "end" containing the start and end distances in cM the genetic map should be subsetted by. Each of these may also be a vector of distances equal to the length of the number of linkage groups to be plotted.
- `marker.names`: a character string naming the type of marker information to plot. If "dist" then distances names plotted alongside each chromosome on the left. If "markers" then marker names are plotted instead. Defaults to "markers"
- `tick`: logical value. If TRUE then an axis with tick marks are generated for the chromosome names. Defaults to FALSE
- `squash`: logical value. If TRUE then creates extra room on the left side of the chromosomes. This is useful for plotting trait names for QTLs using `link.map.wgaim` and `link.map.default`
- `m.cex`: the expansion factor to use for the marker names
- `...`: arguments passed to "plot" to set up the plot region. Arguments may also be passed to "text" for the manipulation of the marker names

Details

This plotting procedure provides a neater visual display of the chromosomes without marker names overlapping vertically. The plotting region will adjust itself to ensure that all marker names are in the region. For this reason the value for "m.cex" is passed to "text" and should be manipulated until an aesthetic genetic map is reached.

For large maps with many chromosomes, marker names and adjacent chromosomes will overlap horizontally. For the interest of readability this has not been corrected. For this particular situation it is suggested that the user horizontally maximise the plotting window until no overlapping occurs or subset the genetic map to achieve the desired result.
Value

This invisibly returns the following list for manipulation with `link.map.wgaim`

- **mt**: A list named by the chromosomes with each element containing the locations of the marker names after correcting for overlapping
- **map**: A list named by the chromosomes with each element containing the locations of markers on the chromosomes
- **chrpos**: The numerical position of the chromosomes on the plotting region

Author(s)

Julian Taylor

References

See Also

- `link.map.wgaim`

Examples

```r
data(genoSxT, package = "wgaim")

## plot linkage map with marker names
link.map(genoSxT, cex = 0.5)

## plot linkage map with distances
link.map(genoSxT, cex = 0.5, marker.names = "dist")
```

Description

Neatly plots the genetic linkage map with marker locations, marker names and highlights QTL's with their associated flanking markers for multiple traits obtained from a list of `wgaim` fits.
Usage

Default S3 method:

```
link.map(object, intervalObj, chr, chr.dist, marker.names
  = "markers", list.col = list(q.col = rainbow(length(object)),
    m.col = "red", t.col = rainbow(length(object))), list.cex =
  list(m.cex = 0.6, t.cex = 0.6), trait.labels = NULL, tick = FALSE, ...)
```

Arguments

- `object`: a list object with elements inheriting the class "wgaim"
- `intervalObj`: object of class "cross" or "interval"
- `chr`: character string naming the subset of chromosomes to plot
- `chr.dist`: a list containing named elements "start" and "end" containing the start and end distances in cM the genetic map should be subsetted by. Each of these may also be a vector of distances equal to the length of the number of linkage groups to be plotted.
- `marker.names`: a character string naming the type of marker information to plot. If "dist" then distances names plotted alongside each chromosome on the left. If "markers" then marker names are plotted instead. Defaults to "markers".
- `list.col`: named list of colors used to highlight the QTL regions and their flanking markers. `q.col` is the colors of the QTL regions (defaults to `rainbow(n)` where `n` is the length of `object`). `m.col` is the color the flanking markers. `t.col` is the color of the trait names used in each model (defaults to the same color as the QTL regions). See `par` for color options
- `list.cex`: a named list object containing the character expansion factors for the marker names `m.cex` and the trait labels `t.cex`
- `trait.labels`: character string naming the trait used in the model object, defaults to the names of the traits used in each model.
- `tick`: logical value. If TRUE then an axis with tick marks are generated for the chromosome names
- `...`: arguments passed to "plot" to set up the plot region. Arguments may also be passed to "text" for the manipulation of the marker names

Details

This plotting procedure is a wrapper for `link.map.wgaim` and displays QTL for multiple traits obtained from a list of models given by `object`. Alternative labels for the traits can be given, in model order, using `trait.labels`.

Color specific highlighting of the QTL is also available using `clist`. This differs slightly from `link.map.wgaim`. Here the `q.col` and `t.col` should be given a set of colors equal to the length of `object`. Let `n` be the length of `object`. Then if `q.col` is `NULL` or length of `q.col` is not equal to `n` then it defaults to `rainbow(n)`. If `t.col` is `NULL` or length of `t.col` is not equal to `n` or `1` then it defaults to the colors of `q.col`. Examples of different color combinations are given below.

The `list.cex` argument can be used to manipulate the character expansion of the marker names using `m.cex` or the character expansion of the `trait.labels` using `t.cex`. If a set of "marker"
analyses has been performed then `pch` is used to plot a symbol at the location of the QTL. This character can be changed using the usual arguments such as `pch` or `cex` that are passed through the usual ... argument.

Value

For a set of "interval" analyses, the genetic linkage map is plotted with shaded QTL regions and highlighted flanking markers. For a set of "marker" analyses, symbols are placed at the QTL locations and the markers are highlighted.

Author(s)

Julian Taylor

References

See Also

`link.map.cross`, `link.map.wgaim`

Examples

```r
## Not run:
## fit wgaim models

rktgw.qtl <- wgaim(rktgw.asf, phenoData = phenoRxK, intervalObj = genoRxK, merge.by = "Genotype", trace = "trace.txt", na.method.X = "include")

rkyld.qtl <- wgaim(rkyld.asf, phenoData = phenoRxK, intervalObj = genoRxK, merge.by = "Genotype", trace = "trace.txt", na.method.X = "include")

## plot QTL intervals

# matching rainbow QTL color and trait names, red flanking markers
# (default) and gray background markers.
link.map(list(rktgw.qtl,rkyld.qtl), genoRxK, col = "gray")

# rainbow QTL color and black trait names, red flanking markers
# (default) and gray background markers.
link.map(list(rktgw.qtl,rkyld.qtl), genoRxK, list.col = list(t.col = "black", m.col = "red"), col = "gray")

# monochromatic plot: gray QTLs, black trait names, black flanking
# markers and gray background markers
```
link.map(list(rktgw.qtl, rkyld.qtl), genoRxK, list.col = list(q.col = rep(gray(0.8), 2), t.col = "black", m.col = "black"), col = "gray")

End(Not run)

link.map.wgaim
Plot a genetic linkage map with QTL’s

Description

Neatly plots the genetic linkage map with marker locations, marker names and highlights QTL’s with their associated flanking markers obtained from a fit to *wgaim*.

Usage

```r
## S3 method for class 'wgaim'
link.map(object, intervalObj, chr, chr.dist,  
  marker.names = "markers", list.col = list(q.col = "light blue",  
  m.col = "red", t.col = "light blue"), list.cex = list(t.cex = 0.6,  
  m.cex = 0.6), trait.labels = NULL, tick = FALSE, ...)
```

Arguments

- `object`
 object of class "wgaim"

- `intervalObj`
 object of class "cross" or "interval"

- `chr`
 character string naming the subset of chromosomes to plot

- `chr.dist`
 a list containing named elements "start" and "end" containing the start and end distances in cM the genetic map should be subsetted by. Each of these may also be a vector of distances equal to the length of the number of linkage groups to be plotted.

- `marker.names`
 a character string naming the type of marker information to plot. If "dist" then distances names plotted alongside each chromosome on the left. If "markers" then marker names are plotted instead. Defaults to "markers".

- `list.col`
 named list of colours used to highlight the QTL regions and their flanking markers. q.col is the color of the QTL regions. m.col is the color the flanking markers. t.col is the color of the trait name used in the model object (see par for colour options)

- `list.cex`
 a named list object containing the character expansion factors for the marker names m.cex and the trait labels t.cex

- `trait.labels`
 character string naming the trait used in the model object

- `tick`
 logical value. If TRUE then an axis with tick marks are generated for the chromosome names

... arguments passed to "plot" to set up the plot region and plot any symbols if required
Details

This plotting procedure builds on link.map.cross by adding the QTL regions to the map and highlighting the appropriate markers obtained from a fit to wgaim. If the linkage map is subsetted and QTL regions fall outside the remaining map a warning will be given that the QTL have been omitted from the display.

The list.col arguments q.col, m.col and t.col have been added for personal colour highlighting of the QTL regions, flanking markers and trait names. For greater flexibility the procedure may also be given the usual col argument that will be passed to the other markers.

The list.cex argument can be used to manipulate the character expansion of the marker names using m.cex or the character expansion of the trait.labels using t.cex. If a "marker" analysis has been performed then pch is used to plot a symbol at the location of the QTL. This character can be changed using the usual arguments such as pch or cex that are passed through the ... argument.

Value

For an "interval" analysis, the genetic linkage map is plotted with shaded QTL regions and highlighted flanking markers. For a "marker" analysis, a symbol is placed at the QTL locations and the markers are highlighted.

Author(s)

Julian Taylor

References

See Also

link.map.cross, wgaim

Examples

```r
## Not run:
# fit wgaim model

yield.qtl <- wgaim(yield.fm, phenoData = phenoRxK, intervalObj = genoRxK, 
merge.by = "Genotype", trace = "trace.txt", na.method.X = "include")

# plot QTL

link.map(yield.qtl, genoRxK, list.col = list(m.col = "red"), col = "gray")

## End(Not run)
```
out.stat

plot the blups or interval outlier statistics from specified iterations of wgaim

Description

Plots the interval blups/outlier statistics for specified iterations of wgaim. The interval blups/outlier statistics appear as a trace across the genome separated by chromosome and appropriately spaced by their distances.

Usage

```r
out.stat(object, intervalObj, int = TRUE, iter = NULL, chr = NULL, stat = "os", ...)
```

Arguments

- `object`: object of class "wgaim"
- `intervalObj`: object of class "cross" or "interval"
- `int`: logical value, if TRUE then plot interval outlier statistics. If FALSE then plot chromosome outlier statistics.
- `iter`: numeric value determining which iterations will be plotted
- `chr`: character vector naming the subset of chromosomes to plot. This can only be used when int is TRUE
- `stat`: character string naming the value to be plotted. Default is "os" (outlier statistics). Other option is "blups" for the scaled empirical blups calculated during each iteration
- `...`: arguments passed to "xyplot" or "barchart" (with some restrictions, see Details)

Details

By default the interval blups/outlier statistics are plotted in separate panels for each iteration in a set layout of 5 rows and one column. This cannot be adjusted and users should not attempt to use the `layout` argument. Viewing multiple pages can be done by specifying the appropriate iterations using the `iter` argument.

The set of QTL are obtained from the model and printed on the plot in their appropriate positions in each panel.

Value

The blups/outlier statistics are plotted in a trellis panel plot.

Author(s)

Julian Taylor
References

See Also

tr.wgaim, wgaim

Examples

```r
## Not run:
# fit wgaim model
rkyld.qtl <- wgaim(rkyld.asf, phenoData = phenoxk, intervalObj = genoxK,
merge.by = "Genotype", trace = "trace.txt", na.method.X = "include")

# plot QTL interval outlier statistics
out.stat(rkyld.qtl, genoxK, iter = 1:5, cex = 0.4)

## End(Not run)
```

Phenotypic Cascades x RAC875-2 zinc experiment data frame

Description

Zinc concentration data of a Doubled Haploid wheat population.

Usage

data(phenoCxR)

Format

This data relates to a glasshouse experiment involving a set of 90 Doubled Haploid (DH) lines from a crossing of Cascades x Rac875-2. The DH lines were allocated randomly to pots in the glasshouse using a randomised complete block design. There were also additional pots that contained 5 of each of the parents (Cascades and Rac-875-2). Two measurements were made, namely zinc concentration and shoot length. The data frame consists of 200 rows and 5 columns described below:

id: A factor of 92 levels containing the unique identification of the DH lines and parents.

Block: A factor of two levels indexing the blocks in the experiment

Type: A factor of 3 levels indexing the wheat variety (Doubled Haploid, Cascades, Rac875-2)

shoot: A numerical variable of shoot lengths for each plant

znconc: A numerical variable of zinc concentration levels for each plant
Examples

data(phenoxRk, package = "wgaim")
plot(phenoxRkshshoot, phenoxRkshznconc)

Phenotypic RAC875 x Kukri trial data frame

Description

Phenotype data arising from a field trial of a Doubled Haploid population involving a crossing of the wheat varieties RAC875 and Kukri

Usage

data(phenoxRk)

Format

This data relates to a field trial conducted in 2007 at the Roseworthy Campus of the University of Adelaide. The trial consisted of 2 replicates of 367 Doubled Haploid lines from a cross between wheat varieties RAC875 and Kukri. The DH lines, the parents (RAC875, Kukri) and commercial varieties (Co5693*E002, DRYSDALE, EXCALIBUR, KRICAUFF, WYALKATCHEM, YITPI) were randomly allocated to 756 plots using a randomized complete block design. The trial was laid out in a 63 by 12 rectangular array. The data frame consists of 756 rows with 8 columns described by

Genotype: A 375 level factor containing a unique identification for the wheat varieties involved in the experiment.

Type: A factor of four levels indexing the wheat varieties (Doubled Haploid, RAC875, Kukri, Other) where Other consist of (Co5693*E002, DRYSDALE, EXCALIBUR, KRICAUFF, WYALKATCHEM, YITPI)

id: A factor of 183 levels uniquely identifying the wheat varieties involved in the experiment.

Range: A factor of 12 numeric levels indexing the field Range.

Row: A factor of 63 numeric levels indexing the field Rows.

Block: A factor of 2 levels indexing the Blocks of the experiment

yield: A numeric vector of yield observations in kg/ha

tgw: A numeric vector of thousand grain weight observations

Examples

data(phenosxT, package = "wgaim")
phenoxT

Description
Phenotypic Sunco x Tasman trial data frame

Usage
data(phenoxT)

Format
This data relates to a two-phase experiment involving a set of 175 Doubled Haploid lines. In the first phase DH lines were randomly allocated to plots using a complete block design with additional plots containing the parents (Sunco, Tasman) as well as commercial lines (Frame, Janz, Krichauff, Machete, RAC820, Trident). The trial was laid out in a rectangular array of 31 rows and 12 columns. In the second phase 23% of the field samples were replicated in the milling process producing a total of 456 milling samples. These partially replicated field samples were then randomly allocated to 38 mill days with 12 samples per mill day. The data frame consists of 456 rows with 11 columns. These columns are

Expt: A one level of factor containing a unique identification for the experiment.

Type: A factor of nine levels indexing the wheat variety (Doubled Haploid, Sunco, Tasman, (Frame, Janz, Krichauff, Machete, RAC820, Trident))

id: A factor of 183 levels uniquely identifying the wheat varieties involved in the experiment.

Range: A factor of 12 numeric levels indexing the field Range.

Row: A factor of 31 numeric levels indexing the field Rows.

Rep: A factor of 2 levels indexing the Block of the experiment

Millday: A factor of 38 numeric levels indexing the milling day

Millord: A factor of 12 levels indexing the milling order

myield: A numeric vector of milling yield observations from the second phase of the experiment.

lrd: A centered numerical vector of milling orders, Millord

lrow: A centered numerical vector of Rows

Examples
data(phenoxT, package = "wgaim")
Description

Stack QTL summary information into a super table ready for simple exporting

Usage

qt1Table(..., intervalObj = NULL, labels = NULL, columns = "all")

Arguments

... list of objects of class "wgaim". All "wgaim" models must have been analysed with the same genetic type (see wgaim.asreml)
intervalObj a genetic object of class "interval" usually used in a wgaim fit
labels a vector of character strings determining the trait names of each QTL table. if this is NULL then the trait names are found from the response of the wgaim model
columns this can be either a numeric vector determining which columns of the QTL summaries should be outputted or "all" for all columns. The default is "all".
... a numeric vector determining which columns of the summary should be returned (see Details)

Details

The super table is created by stacking the QTL summaries on top of each other using the models in ... from left to right. An extra column is created on the left hand side of the stacked table for the trait names given in the labels argument. The names are only placed in the first element of each table with NAs for the rest of the elements. This then allows simple exporting to spreadsheet packages or with the R/LaTeX package xtable.

Value

A data.frame object with stacked QTL summaries

Author(s)

Julian Taylor

References

summary.wgaim

See Also

wgaim

Examples

Not run:

fit wgaim models

rktgw.qtl <- wgaim(rktgw.asf, phenoData = phenoRxK, intervalObj = genoRxK,
merge.by = "Genotype", trace = "trace.txt", na.method.X = "include")

rkyld.qtl <- wgaim(rkyld.asf, phenoData = phenoRxK, intervalObj = genoRxK,
merge.by = "Genotype", trace = "trace.txt", na.method.X = "include")

create super table and export

qtlt <- qtlTable(rktgw.qtl, rkyld.qtl, labels = c(\"Conc.\", \"Shoot\"))
print(xtable(qtlt), file = \"superQTL.tex\", include.rownames = FALSE)

End(Not run)

summary.wgaim

Summary and print methods for the class "wgaim"

Description

Prints a summary of the "wgaim" object in a presentable format

Usage

S3 method for class 'wgaim'
summary(object, intervalObj, LOD = TRUE, ...)

S3 method for class 'wgaim'
print(x, intervalObj, ...)

Arguments

object an object of class "wgaim" (see Details)

x an object of class "wgaim"

intervalObj a data structure of class "cross" or "interval" containing the genotypic data

LOD logical value. If TRUE LOD scores for QTL are calculated, defaults to TRUE

... further arguments passed to or from other methods
Details

It is important that the `intervalObj` is not missing in `summary.wgaim` or `print.wgaim` as it contains vital summary information about each of the QTL detected.

The summary of the QTL differs depending on the method chosen in the analysis using `wgaim.asreml`. If `method = "random"` then the significance of the QTL are summarized using a probabilistic argument based on the conditional distribution of the QTL sizes given the data (see Verbyla et. al, 2012 in References) Thus, for each QTL, a value is calculated that represents the probability that the QTL size is greater than zero (or less than zero if the effect is negative). If `method = "fixed"` then the significance of the QTL is summarized using a one degree of freedom Wald statistic.

Value

A summary of the QTL component of the "wgaim" object is printed to the screen. For each QTL detected, if an "interval" analysis was performed then `summary.wgaim` prints which chromosome, name and distance of each flanking marker, size, probability/p-value, contribution of genetic variance and LOD score if desired. If a "marker" analysis was performed then the chromosome, name and distance of the associated marker, size, probability/p-value, contribution of genetic variance and LOD score are printed. `print.wgaim` provides a narrative brief of the QTL’s detected.

Author(s)

Julian Taylor, Simon Diffey, Ari Verbyla and Brian Cullis

References

See Also

`wgaim.asreml`

Examples

```r
## Not run:
# read in data
data(phenorxK, package = "wgaim")
data(genoRxK, package = "wgaim")

# subset linkage map and convert to "interval" object
```
tr.wgaim <- subset(genoRxK, chr = c("1A", "2D1", "2D2", "3B"))
genorxk <- cross2int(genoRxK, missgeno = "Martinez",
 id = "Genotype", map.function = "kosambi")

base model
rkyld.asf <- asreml(yld ~ Type + 1row, random = ~ Genotype + Range,
 rcor = ~ ar1(Range):ar1(Row), data = phenoRxK)

find QTL
rkyld.qtl <- wgaim(rkyld.asf, phenoData = phenoRxK, intervalObj = genorxK,
 merge.by = "Genotype", gen.type = "interval", method = "fixed",
 selection = "interval", trace = "trace.txt", na.method.X = "include")

summarise
print(rkyld.qtl, genorxK)
summary(rkyld.qtl, genorxK)

End(Not run)

tr.wgaim

Display diagnostic information about wgaim QTL model

Description

Displays diagnostic information about QTL detection and significance for the sequence of models used in a wgaim fit.

Usage

```r
## S3 method for class 'wgaim'
tr(object, iter = 1:length(object$QTL$effects), diag.out = TRUE, ...)
```

Arguments

- `object`
an object of class "wgaim"
- `iter`
a vector of integers describing the rows of the p-value matrix to display
- `diag.out`
logical value. If TRUE then diagnostic information about the testing of the genetic variance is given for all iterations.
- `...`
arguments passed to `print.default` for displaying of information

Details

By default the printing of the objects occur with arguments quote = FALSE and right = TRUE. Users should avoid including these arguments.
Value

A probability value matrix for the successvie QTL selected is displayed with rows according to the iterations specified. If diag.out = TRUE then a matrix with rows consisting of the likelihood with genetic variance, the likelihood without genetic variance (NULL model), the statistic and the p-value for the statistic.

Author(s)

Julian Taylor

References

See Also

wgaim

Examples

```r
## Not run:
# read in data
data(phenorxK, package = "wgaim")
data(genoRxK, package = "wgaim")

# subset linkage map and convert to "interval" object
genorxK <- subset(genoRxK, chr = c("1A", "2D1", "2D2", "3B"))
genorxK <- cross2int(genoRxK, missgeno = "Martinez",
                   id = "Genotype", map.function = "kosambi")

# base model
rkyld.asf <- asreml(yld ~ Type + lrow, random = ~ Genotype + Range,
                   rcov = ~ ar1(Range):ar1(Row), data = phenorxK)

# find QTL
rkyld.qtl <- wgaim(rkyld.asf, phenodata = phenorxK, intervalObj = genorxK,
                   merge.by = "Genotype", gen.type = "interval", method = "fixed",
                   selection = "interval", trace = "trace.txt", na.method.X = "include")

# diagnostic check
```
Description

Fits an iterative Whole Genome Average Interval Mapping (wgaim) model for QTL detection.

Usage

```r
## S3 method for class 'asreml'
wgaim(baseModel, phenoData, intervalObj, merge.by = NULL,
gen.type = "interval", method = "fixed", selection = "interval",
exclusion.window = 20, breakout = -1, TypeI = 0.05, attempts = 5,
trace = TRUE, verboseLev = 0, ...)
```

Arguments

- `baseModel`: a model object of class "asreml" usually representing a base model with which to build the qtl model.
- `phenoData`: a data frame containing the phenotypic elements used to fit `baseModel`. This data is checked against the base models data.
- `intervalObj`: a list object containing the genotypic data, usually an "interval" object obtained from using cross2int. This object may contain many more markers than observations (see Details).
- `merge.by`: a character string or name of the column(s) in `phenoData` and `intervalObj` to merge the phenotypic and genotypic data sets.
- `gen.type`: a character string determining the type of genetic data to be used in the analysis. Possibilities are "interval" and "markers". The default is "interval". (see Details).
- `method`: a character string determining the type of algorithm to be used in the analysis. Possibilities are "random" and "fixed". The default is "random". (see Details).
- `selection`: a character string determining the type of selection method that is used to select QTL in the analysis. Possibilities are "interval" and "chromosome". The default is "interval". (see Details).
- `exclusion.window`: For each QTL, the distance in centimorgans around each QTL that is excluded from further analysis.
- `breakout`: A numerical integer equivalent to the iteration where the algorithm breaks out. The default is -1 which ensures the algorithm finds all QTL before halting. (see Details).
TypeI a numerical value determining the level of significance for detecting a QTL. The default is 0.05.

attempts An integer representing the number of attempts at convergence for the fixed or random QTL model. The default is 5.

trace An automatic tracing facility. If trace = TRUE then all asreml output is piped to the screen during the analysis. If trace = "file.txt", then output from all asreml models is piped to "file.txt". Both trace mechanisms will display a message if a QTL is detected.

verboselev numerical value, either 0 or 1, determining the level of tracing outputted during execution of the algorithm A 0 value will produce the standard model fitting output from the fitted ASReml models involved in the forward selection. A value of 1 will add a table of chromosome and interval outlier statistics for each iteration.

... Any other extra arguments to be passed to each of the asreml calls. These may also include asreml.control arguments.

Details

In the initial call to wgaim.asreml, the marker or interval information is collated from intervalObj. If gen.type = "interval" then midpoints of intervals are collated from the "intval" component of intervalObj. If gen.type = "markers" then markers are collated from the "imputed.data" component of intervalObj (It should be noted that a "marker" analysis is less efficient than an "interval" analysis as it does not take into account the correlation of the marker effects in the specificity of the model; see Verbyla et. al (2007).

The method argument in wgaim.asreml allows the user access to two algorithms. If method = "fixed" the algorithm places selected QTL as an additive set of fixed effects in the model as the forward selection algorithm proceeds. If method = "random" places selected QTL in the random part of the model as an additive set of random effects. This new formulation is outlined in Verbyla et. al (2012).

The selection argument determines the type of selection algorithm for the analysis. If selection = "chromosome" then outlier statistics for each chromosome are calculated and the largest chromosome or linkage group is chosen. The largest marker/interval outlier statistic in this linkage group is then selected as the putative QTL. If selection = "interval", only marker/interval statistics are calculated and the largest marker/interval is chosen as the putative QTL.

Note: If a genetic map has a small number of markers on a linkage group then using selection = "chromosome" as the selection algorithm is known to be flawed (see Verbyla & Taylor, 2012). For this reason it is suggested that this option only be used when there are a moderate number of markers on each linkage group.

Users can now break out of the algorithm using the breakout argument. If a numerical value greater than zero is given, then the forward selection algorithm breaks at the iteration equal to that value and returns the collected information to this point. This includes fixed/random QTL effects, diagnostic components such as interval/marker BLUPs and outlier statistics as well as the trace components of the algorithm. It should be noted that the algorithm breaks out before a QTL has been moved to the fixed/random effects and estimated. Therefore a positive integer, say n will not return an estimate of the nth QTL but it will return the outlier statistics or BLUPs for the nth iteration.
It is recommended that `trace = "file.txt"` be used to pipe the sometimes invasive tracing of `asreml` licensing and fitting numerics for each model to a file. Errors, warnings and messages will still appear on screen during this process. Note some warnings that appear may be passed through from an `asreml` call and are outputted upon exit. These may be ignored as they are handled during the execution of the function.

This version of `wgaim` allows high dimensional marker information to be analysed. A simple transformation of the collated high dimensional marker set shows that it may be reduced to the number of genetic lines used in the analysis. This transformation is internal to the `wgaim.asreml` call and users can now expect a considerably large acceleration in the performance of `wgaim`.

Value

An object of class "wgaim" which also inherits the class "asreml" by default. The object returned is actually an `asreml` object (see `asreml.object`) with the addition of components from the QTL detection listed below.

QTL

A list of components from the significant QTL detected including a character vector of the significant QTL along with a vector of the QTL effect sizes. There are also a number of diagnostic measures that can be found in `diag` that are used in conjunction with `tr.wgaim` and `out.stat`.

Author(s)

Julian Taylor, Simon Diffey, Ari Verbyla and Brian Cullis

References

See Also

`print.wgaim`, `summary.wgaim`

Examples

```r
## Not run:
# read in data
data(phenorxK, package = "wgaim")
data(genoRxK, package = "wgaim")
```
subset linkage map and convert to "interval" object

genorxK <- subset(genoRoxK, chr = c("1A", "2D1", "202", "3B"))
genorxK <- cross2int(genoRoxK, missgeno = "Martinez", id = "Genotype")

base model

rkyld.asf <- asreml(yld ~ Type + lrow, random = ~ Genotype + Range,
 rcov = ~ ar1(Range):ar1(Row), data = phenoRoxK)

find QTL

rkyld.qtl <- wgaim(rkyld.asf, phenoData = phenoRoxK, intervalObj = genorxK,
 merge.by = "Genotype", gen.type = "interval", method = "fixed",
 selection = "interval", trace = "trace.txt", na.method.X = "include")

End(Not run)
Index

*Topic **datasets**
- genoCxR, 6
- genoRxK, 6
- genoSxT, 7
- phenoCxR, 15
- phenoRxK, 16
- phenoSxT, 17

*Topic **hplot**
- link.map.cross, 8
- link.map.default, 9
- link.map.wgaim, 12
- out.stat, 14

*Topic **package**
- wgaim-package, 2

*Topic **regression**
- cross2int, 3
- qtlTable, 18
- summary.wgaim, 19, 25
- tr(tr.wgaim), 21
- tr.wgaim, 4, 15, 21
- wgaim, 3, 13, 15, 19, 22
- wgaim(wgaim.asreml), 23
- wgaim-package, 2
- wgaim.asreml, 20, 23

<table>
<thead>
<tr>
<th>cross2int</th>
<th>2, 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>genoCxR</td>
<td>6</td>
</tr>
<tr>
<td>genoRxK</td>
<td>6</td>
</tr>
<tr>
<td>genoSxT</td>
<td>7</td>
</tr>
<tr>
<td>link.map</td>
<td>3</td>
</tr>
<tr>
<td>link.map(link.map.cross)</td>
<td>8</td>
</tr>
<tr>
<td>link.map.cross</td>
<td>8, 11, 13</td>
</tr>
<tr>
<td>link.map.default</td>
<td>3, 9</td>
</tr>
<tr>
<td>link.map.wgaim</td>
<td>9, 11, 12</td>
</tr>
<tr>
<td>out.stat</td>
<td>3, 14</td>
</tr>
<tr>
<td>phenoCxR</td>
<td>15</td>
</tr>
<tr>
<td>phenoRxK</td>
<td>16</td>
</tr>
<tr>
<td>phenoSxT</td>
<td>17</td>
</tr>
<tr>
<td>print.summary.wgaim(summary.wgaim)</td>
<td>19</td>
</tr>
<tr>
<td>print.wgaim</td>
<td>25</td>
</tr>
<tr>
<td>print.wgaim(summary.wgaim)</td>
<td>19</td>
</tr>
</tbody>
</table>